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Expansions of key protein families in the German cockroach
highlight the molecular basis of its remarkable success
as a global indoor pest
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1 | INTRODUCTION

Abstract

The German cockroach, Blattella germanica, is a worldwide pest that infests buildings, including
homes, restaurants, and hospitals, often living in unsanitary conditions. As a disease vector and
producer of allergens, this species has major health and economic impacts on humans. Factors con-
tributing to the success of the German cockroach include its resistance to a broad range of insec-
ticides, immunity to many pathogens, and its ability, as an extreme generalist omnivore, to survive
on most food sources. The recently published genome shows that B. germanica has an exception-
ally high number of protein coding genes. In this study, we investigate the functions of the 93 sig-
nificantly expanded gene families with the aim to better understand the success of B. germanica
as a major pest despite such inhospitable conditions. We find major expansions in gene families
with functions related to the detoxification of insecticides and allelochemicals, defense against
pathogens, digestion, sensory perception, and gene regulation. These expansions might have
allowed B. germanica to develop multiple resistance mechanisms to insecticides and pathogens,
and enabled a broad, flexible diet, thus explaining its success in unsanitary conditions and under
recurrent chemical control. The findings and resources presented here provide insights for better

understanding molecular mechanisms that will facilitate more effective cockroach control.

and as producer of potent allergens that cause asthma morbidity

(Gore & Schal, 2007). To mitigate these effects, cockroach infestations

The German cockroach, Blattella germanica, is an obligatory com-
mensal with humans and a quintessential generalist omnivore that
also engages in detritivory, saprophagy, coprophagy, and cannibalism
(Schal, C., Gautier, J.-Y., & Bell, 1984; Schal, 2011). B. germanica is a
perennial pest in residential settings and other human-built structures,
including restaurants, hospitals, schools, transportation networks,
and even structures housing confined animals (e.g., poultry, pigs). The
German cockroach is also a major public health pest, mainly because it
mechanically vectors disease agents associated with unsanitary areas
(Schal, 2011; Brenner, 1995; Ahmad, Ghosh, Schal, & Zurek, 2011)

are frequently targeted with a broad array of insecticides, which in
turn have selected for multiple resistance mechanisms to all organic
insecticides within as little as 3 years of their deployment (Schal &
Hamilton, 1990). Resistance to DDT was documented in 1951, to
organophosphates in 1964, carbamates in 1968, and to pyrethroids
in 1989 (Cochran, 1995). Since then, resistance has been documented
to hydramethylnon, fipronil, sulfluramid, and various neonicotinoids
(Cochran, 1995). All these resistance mechanisms involve physio-
logical mechanisms, including decreased penetration of the cuticle,

increased sequestration and excretion, upregulation of insecticide
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metabolism, and mutations at insecticide target sites (Cochran,
1995).

Multiple resistance mechanisms to insecticides have been doc-
umented for a broad range of pest species, such as several disease
carrying mosquito species (reviewed in Liu, 2015), or major crop pests
like the peach potato aphid, Myzus persicae, (Bass et al., 2014) and the
tobacco cutworm, Spodoptera litura (Cheng et al., 2017). An important
mechanism that can lead to the evolution of resistance to multiple
insecticides is the amplification of genes involved in metabolic detox-
ification (Bass et al., 2014; Cheng et al., 2017; Liu, 2015). For example,
it was found that S. litura has adapted not only to diverse host plant
chemistry and ecological conditions, but also to recurrent onslaughts
with a diverse array of insecticides by dramatically expanding gene
families encoding detoxification enzymes (e.g., cytochrome P450s,
carboxylesterases, and glutathione S-transferases) and gustatory
receptors for bitter or toxic tastants (Cheng et al., 2017).

Therecently released genome of B. germanica revealed an enormous
proteome comprising almost 30,000 protein coding genes, mainly as a
result of 93 significant gene family expansions without any detected
significant contractions (Harrison et al., 2018). It is conceivable, in a
similar mode as reported for other pest species, that this large pro-
teome allowed B. germanica to evolve such a broad range of resis-
tance to toxins and pathogens. In fact, a de novo transcriptome of
B. germanica revealed a large repertoire of transcripts important for
the metabolism of toxins and defense against pathogens (Zhou et al.,
2014). These include genes in both the Toll and Imd pathways, including
serpins (47), cathepsins (32), lipopolysaccharide-binding proteins (21),
transferrins (20), Gram negative bacteria binding proteins (4), Toll-
like receptors (16), peptidoglycan recognition proteins (15), lysozymes
(8), Imd proteins (3), and others including 115 lectin-like proteins and
18 p-glucanases (Zhou et al., 2014). Also, in the recently described
genome of the American cockroach, Periplaneta americana, another
major human pest species, gene family expansions could be related
to insecticide resistance, most notably cytochrome P450 monooxyge-
nases (Li et al., 2018).

In this study, we investigate the putative functions of the expanded
gene families in the genome of B. germanica. We also analyze the
expression of these gene families across 11 developmental stages (Ylla,
Piulachs, & Belles, 2017), in order to establish a possible diversifi-
cation of function among gene copies within expanded families. This
study provides findings and resources for a better understanding of the
molecular mechanisms involved in the global success of this major com-

mensal indoor pest.

2 | RESULTS & DISCUSSION

2.1 | Expanded gene families

Ninety-three gene families are significantly expanded in the B. german-
ica genome with up to 21-fold increase in size compared to an esti-
mated ancestral state (Supporting Information Table S1). The ances-
tral size of gene families was estimated based on a phylogeny contain-
ing 19 insect species (see methods of Harrison et al. 2018 and their

Fig. S2 for further details). Interestingly, no gene families were con-
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tracted, leading to one of the largest so far reported insect proteomes
(29,216 proteins; Harrison et al. 2018). The accuracy of this large pro-
teome was confirmed by strong evidential support and many manually
curated gene families.

The enrichment of gene ontology (GO) terms associated with the
genes in the expanded families was carried out (Figure 1). The majority
of the enriched GO terms within the Cellular Component category
were related to cell structure and transport, such as “microtubule
associated complex”, “dynein complex”, and “cytoskeleton” (Figure 1).
The strong enrichment of “flavin adenine dinucleotide binding” (59
annotations, expected 14.3) can be attributed to the large expansion of
glucose dehydrogenases (64 genes, ancestrally 29), since this GO term
is mapped to the Pfam domain “GMC_oxred_N" (glucose-methanol-
choline oxidoreductase, one of the two functional domains of glucose
dehydrogenase). Several enriched terms can be linked to a heightened
ability of the German cockroach to detect chemical signals, such as
“olfactory receptor activity”, “odorant binding”, “sensory perception
of smell”, and “G-protein coupled receptor signalling pathway”, and
are associated with the large expansion of ionotropic receptors, as
previously reported (Harrison et al., 2018; Robertson et al., 2018).
Many other functions relate to protein processing, redox reactions,
and developmental processes (Figure 1).

The majority of the 93 gene families can be grouped into eight func-
tional categories, with more than half contained in the five functional
categories “detoxification”, “defense against pathogens”, “digestion”,
“sensory perception”, and “gene regulation” (Table 1). In the following
sections, we discuss how the gene family expansions related to these
functions might have allowed the German cockroach to become such
a successful pest of the human-built environment, despite extremely

challenging conditions.

2.2 | Metabolism of insecticides

As a household pest with strong effects on human health, the Ger-
man cockroach is systematically attacked with a wide range of insec-
ticides. This species has, however, developed resistance to many types
of insecticides (Cochran, 1995). One important mechanism in insecti-
cide resistance is metabolic degradation. Three important gene fam-
ilies in this respect are cytochrome P450 monooxygenases (P450s),
carboxyl esterases, and glutathione S-transferases (GSTs) (Liu, 2015;
Ranson et al., 2002). All three gene families are significantly expanded
in B. germanica, possibly explaining its resistance to many insecticides.
P450s, which catalyze the oxidation of a broad range of insecticides
(Silva et al., 2012), are highly abundant in the genome of B. germanica
with 158 genes. Within our 21 species set of 20 insects and the
centipede Strigamia maritima, only the genome of the yellow fever
mosquito, Aedes aegypti, contained more P450s genes with 178.
Both B. germanica and A. aegypti are pests of humans, experience
strong selection from insecticides, and therefore have evolved high
resistance to insecticides (Vontas et al., 2012). Interestingly, the next
largest repertoires of P450s in our species set also belonged to pest
species. These were the Florida carpenter ant, Camponotus floridanus
(127); the red flour beetle, Tribolium castaneum (124); the migratory

locust, Locusta migratoria (122); and the kissing bug, Rhodnius prolixus
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FIGURE 1 Enriched Gene Ontology (GO) terms within the expanded gene families. Only significantly enriched terms (P-value < 0.05) are repre-
sented, while for molecular function and biological process only top 30 terms, based on P-value, are shown [Color figure can be viewed at wileyon-

linelibrary.com]

TABLE 1 Expanded gene families summarized by functional
category

Numberof  Number of genes
Function clusters B. germanica (ancestrally)
Detoxification of insecticides 7 252 (139)
Microbial defense and 10 195 (51)
immune response
Digestion 9 274 (109)
Perception 13 398 (128)
Gene regulation 13 306 (126)
Cell structure 7 204 (95)
Protein processing 7 208 (69)
Development 5 120 (66)
Others 20 503 (201)

(119), an important vector of the Chagas parasite. In the American
cockroach, P450s are also expanded at 178 gene copies (Li et al,,
2018). An expansion of P450s can be expected to help these species
metabolize a broader range of insecticides. It is important to note
however, that the carpenter ant, a social insect, has not been demon-
strated to express resistance to any insecticides, underscoring that
P450s participate not only in detoxification of allelochemicals and
xenobiotics, but also in many unrelated physiological processes.

In B. germanica, especially P450s from the subgroup CYP4 are
expanded (59, ancestrally 30, Supporting Information Table S1), where
we found evidence for transposable element (TE)-assisted tandem
duplications (Janousek, Karn, & Laukaitis, 2013). This is based on a
significantly higher TE content within 10 kb flanking regions of these
genes (mean 51.4%) compared to the whole genome level (46.3%; P-
value = 0.001; Wilcoxon rank sum test; Figure 2). The majority of the

TEs were long interspersed nuclear elements (LINEs) (mean 34.0%

compared to 29.3% in whole genome; P-value < 0.001; Wilcoxon rank
sum test). Further evidence for tandem duplications is offered by
20 out of the 59 B. germanica CYP4 genes sitting in close synteny (one
700 kb region) on the same scaffold (Figure 2, scaffold 637) and con-
taining an even higher TE content in flanking regions (mean 54.7%
TE content; 36.4% LINES). Most other CYP4 genes also contained
higher than expected TE content in flanking regions, although their
synteny could not be established due to their distribution across dif-
ferent scaffolds. A subgroup of CYP6 genes was also expanded (eight,
ancestrally three). Both CYP4 and CYPé6 are known to have impor-
tant roles in detoxification and insecticide resistance, for example, in
the peach-potato aphid, Myzus persicae (Silva et al., 2012), and in the
bed bug, Cimex lectularius (Zhu et al., 2013). A TE assisted expansion of
P450s may therefore have allowed B. germanica to successfully develop
resistance against many different insecticides. We note as well that
CYP4 and CYP6 participate in other physiological functions, including,
among others, biosynthesis of cuticular hydrocarbons (Qiu et al., 2012)
and clearance of odorants in the antennae (Keeling et al., 2013).

Carboxylesterases hydrolyze carboxylic esters and are therefore
important enzymes for the metabolism of organophosphorus (OP) and
pyrethroid insecticides (Hemingway & Karunaratne, 1998). Neverthe-
less, carboxylesterases are also important for general digestion that
requires degrading ester bonds, such as cellulose metabolism. A higher
activity of esterases could be observed in the presence of insecti-
cides for resistant compared to susceptible strains of B. germanica
(Prabhakaran & Kamble, 1993). We have found a significant expansion
of E4 esterases (62, ancestral state: 41) in the genome of B. germanica,
possibly allowing multiple resistance to OPs and pyrethroids. An ampli-
fication of E4 and closely related FE4 enzymes in the peach potato
aphid, M. persicae, where up to 80 gene copies exist, has led to resis-
tance against OPs via an overexpression of these enzymes (Bass et al.,
2014; Silvaet al,, 2012).
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FIGURE 2 Transposable element contentin CYP4 genes. On the left is a gene tree of the 59 CYP4 genes. The central column contains the scaffold
IDs on which the genes are situated. The heatmap shows three categories of repetitive content (DNA transposons, LINEs and LTR retrotransposons)
in flanking regions (10 kb either side of genes). The colour shading is based on Z-scores calculated per category across all genes, with darker colours
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GSTs are implicated in resistance to several insecticides including
DDT and OPs by converting toxic metabolites into water soluble con-
jugates that can be more readily excreted (Enayati, Ranson, & Heming-
way, 2005; Silva et al., 2012). A subgroup of the GSTs was significantly
expanded in B. germanica (23, ancestrally 10), which is also expanded
in the malaria mosquito, Anopheles gambiae (Ranson et al., 2002). GSTs
also offer additional protection against the effects of insecticides by
reducing oxidative stress (Silva et al., 2012; Vontas, Graham, & Hem-
ingway, 2001). It is also important to note that GSTs from the Ger-
man cockroach (Bla g 5) and the American cockroach as well as from
other arthropods and nematodes, are clinically relevant human aller-
gens (Arrudaet al., 1997; Sookrung et al., 2018).

UDP-glucuronosyltransferases (UGT) are also involved in the con-

jugation of insecticides and show elevated expression in insecticide

resistant mosquitoes when exposed to permethrin (Vontas et al.,
2012). We annotated 61 UGTs in the B. germanica genome, which is
more than twice the number estimated for the ancestral state (30). The
expansion of UGTs appears to be a hallmark of not only an evolutionary
response to xenobiotics, including insecticides, but also to polyphagy
and omnivory, as demonstrated in a locust (Wang et al., 2014).

Gene family expansions and a corresponding increase in protein
abundance is considered one of the main mechanisms that allow the
development of insecticide resistance (Liu, 2015). The expansions of
these four gene families, and others such as the ABC transporters
(see below), are therefore most likely responsible for this pest's
ability to develop resistance to many different insecticides, including
organochlorines, OPs, carbamates, pyrethroids, and newer classes

like neonicotinoids and phenylpyrazoles. Interestingly, alternative



MWI LEY JEZ-B MOLECULAR awo DEVELOPMENTAL EVOLUTION

mechanisms that allow the evolution of insecticide resistance exist,
such as mutations within the functional regions or changes in expres-
sion of insecticide resistance genes. This is the case for the bed bug,
Cimex lectularius, which is resistant to many insecticides but for which
these gene families are not expanded (Benoit et al., 2016; Rosenfeld
etal, 2016).

2.3 | Defense against pathogens

The German cockroach thrives in unsanitary conditions, leading to its
status as a major public health pest and vector of disease agents (Bren-
ner, 1995; Ahmad et al., 2011). We found a number of expansions in
gene families with functions related to microbial defense and immune
response, which may have allowed B. germanica to adapt to septic
conditions.

We discovered an expansion within a subgroup of ATP-binding cas-
sette (ABC) transporters (39; ancestrally 25; total number of ABC
transporters: 81) in the B. germanica genome. ABC-transporters are
membrane proteins, responsible for the efflux of molecules such as
xenobiotics and lipids from eukaryotic cells (and import in prokary-
otes) (Rees, Johnson, & Lewinson, 2009). Their expansion may allow
B. germanica to efficiently remove microbial toxins. These genes show
varied expression profiles throughout development, where different
gene copies may offer protection at different developmental stages
(Figure 3a). Interestingly, at least three gene copies appear to be mater-
nally provided within the unfertilized egg. This offers support for a
diversification of specificity and possibly function among the ABC
transporter gene copies. ABC-transporters have also been implicated
in resistance to insecticides (Gahan, Pauchet, Vogel, & Heckel, 2010;
Silva et al., 2012; Dermauw & Van Leeuwen, 2014) and, accordingly,
are also expanded in the American cockroach (Li et al., 2018), but they
may have much more diverse functions (Broehan, Kroeger, Lorenzen, &
Merzendorfer, 2013).

A massively expanded family of defense proteins are the
hemolymph lipopolysaccharide (LPS)-binding proteins (86; ances-
trally 14), which have been found to be important for ingestion
of bacteria by hemocytes in the American cockroach, P. americana
(Jomori & Natori, 1992). Many of these proteins are highly expressed
within nymphal stages and much fewer during embryonic develop-
ment (Figure 3b). A high number of these LPS-binding proteins are
expressed at an above average level in adult females (z-value > O;
Fig. 3b). These results support the notion that LPS-binding proteins
can be important for protecting against bacterial infection, the risk
of which increases in nymphal stages and especially adulthood when
individuals are less protected.

Two expanded families can be linked specifically to defense against
fungal infection. There are 10 drosomycin copies in the B. germanica
genome compared to an estimated single ancestral copy. Drosomycin
is an antifungal peptide, which in Drosophila melanogaster is secreted
into the hemolymph as a reaction to infection (Ferrandon et al., 1998;
Lemaitre, Reichhart, & Hoffmann, 1997). We found eight glucosylce-
ramidases (ancestrally two), which may be important for metabolizing

glucosylceramides found in the membrane of pathogenic fungi, such
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as Cryptococcus neoformans and Cryptococcus gattii (Watanabe et al.,
2015).

Further expansions can be related to more general immune
responses, such as DSCAM (9) and serpins (24), among others (Sup-
porting Information Table S1). The expanded family of tenascin-X
genes (16 genes) may allow improved wound healing (Egging et al.,
2007), while further families such as MOXD1-like proteins (8) (Dowling
etal.,2012; de Boer et al., 2013) and catalases (16) (Finkel & Holbrook,
2000) are important for repairing or preventing cell damage caused by
oxidative stress.

2.4 | Digestive enzymes

As with the defense proteins, the expansions of nine digestive protein
families may have supported the success of this human-commensal
pest. The German cockroach is an extreme omnivore with a diverse
and adaptive diet (Jensen, Schal, & Silverman, 2015), for which a broad
repertoire of digestive enzymes would be required. Accordingly, we
find a large set of a-glucosidase genes (18), which allow the breakdown
of starch and disaccharides to glucose (Sgrensen, Norén, Sjostrom,
& Danielsen, 1982), while 20 p-glucosidases allow these cockroaches
to digest large amounts of plant material (Sticklen, 2008). The mem-
bers of both families of glucosidases show varied and partially comple-
mentary expression especially during nymphal and adult stages (Fig-
ures 3c and d). The higher expression of a- compared to f- glucosidase
in these results is likely related to the lack of plant material in the diet
of the lab-raised animals. However, the variation in expression profiles
between gene copies suggests a diversification in substrate specificity
of these enzymes. One gene in this a-glucosidase gene family (gene id:
Bger_16909) was ubiquitously highly expressed throughout all devel-
opmental stages. This gene is likely a heteromeric amino acid trans-
porter (HAT), which is known to have homology to a-glucosidase, since
beside an @-amylase domain it also contains an SLC3A2_N domain (4F2
cell-surface antigen heavy chain) (Palacin & Kanai, 2004).

Glucose dehydrogenases, which metabolize glucose to provide
an organism with energy (Neijssel, Hommes, Postma, & Tempest,
1989), are also expanded in B. germanica (64). Glucose-dependent
insulinotropic receptors, of which 51 copies exist in the genome of
B. germanica compared to nine in the ancestral state, also play animpor-
tant role in the metabolism of glucose by controlling the release of
insulin.

The two further typical energy sources, fats and proteins, can
be metabolized by large numbers of lipases and trypsins, respec-
tively (Supporting Information Table S1). Both expanded groups of
enzymes are predominantly over-expressed during nymphal and adult
stages when individuals were feeding on a fat- and protein-rich diet
(Figures 3e and f). However, expression profiles differ considerably
between gene copies indicating a variation in substrate specificity.
Interestingly, transcripts of two lipase gene copies (Bger_00361 and
Bger_17567) were highly abundant only within the nonfertilized egg
(Figure 3 e), suggesting they were maternally deposited and may play
an important role in releasing energy from lipids for the first cell
divisions in early embryonic development (Ziegler & Van Antwerpen,

2006). Another lipase gene copy (Bger_25734) was overexpressed only
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FIGURE 3 Expression of expanded families of defence and digestive proteins. Each row in the heatmap represents an individual gene within the
gene family. The colour shows the Z-score of expression at each developmental stage. The Z-scores are calculated within each developmental stage
among all genes, and the values represent the number of standard deviations from the standardized mean of 0. NFE, nonfertilised egg; EDO,1,2,6,
embryos in days after fertilisation; N1,3,5,6, nymphal stages; Adult, 5-day old females. (a) ABC transporters; (b) hemolymph lipopolysaccharide-
binding proteins; (c) a-glucosidases; (d) f-glucosidases; (e) lipase 3; and (f) trypsins [Color figure can be viewed at wileyonlinelibrary.com]

at day 6 of embryonic development suggesting a specific function in
lipid metabolism for later embryo development. This occurs prior to
a rupturing of the amnion and serosa, after which the embryo has
direct contact and access to the yolk, which contains lipid reserves

(Tanaka, 1976). The dramatic morphogenetic processes that follow

require extensive lipid metabolism, which could explain the burst of
Bger_25734.

With these gene family expansions, the German cockroach is able
to digest and metabolize a wide range of carbohydrate, fat, and protein

sources throughout its development. This explains the ability of this
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species to adapt its diet to ever changing nutritional conditions, both

in quantity and quality.

2.5 | Sensory perception

Thirteen gene families with functions related to sensory perception
were significantly expanded in B. germanica. These include gene fam-
ilies related to chemosensation of odorants and tastants such as
ionotropic, gustatory, and odorant receptors (IRs, GRs, & ORs, respec-
tively), of which the IRs are known to be particularly expanded (Harri-
son et al., 2018), as well as odorant binding proteins (Robertson et al.,
2018) (Supporting Information Table S1).

Further expanded gene families related to perception include tran-
sient receptor potential cation channel A1 (TRPA1, 22, ancestrally 11),
which has reported functions in mechanosensation (Nilius, Owsianik,
Voets, & Peters, 2007), olfaction, vision, hearing, and thermosensation
(in Helicoverpa armigera a TRPA1 channel senses thermal stimulus and
irritating chemicals) (Wei et al., 2015). Cyclic nucleotide gated cation
channels (22, ancestrally 12) are important for photo- or olfactory sen-
sation (Kaupp & Seifert, 2002) and amiloride-sensitive sodium channel
proteins (48, ancestrally 18) may be important for detecting sodium
and potassium salts (Liu et al., 2003).

This high abundance of genes related to perception may allow this
generalist to detect not only many types of food sources but also to
detect and avoid dangerous toxins and pathogens, which abound in
their habitats. Avoidance may therefore be an additional survival strat-

egy to the defence mechanisms described above.

2.6 | Generegulation

Thirteen gene families with putative functions in gene regulation were
significantly expanded from a total of 126 ancestrally to 306 genes in
the genome of B. germanica (Table 1). Ten of these expanded families
comprise genes containing zinc finger (ZF) domains (expanded from
118 to 258 in total; Supporting Information Table S1). The majority of
these genes (193) contain between one and 19 ZF domains of the type
C2H2. C2H2 ZF domains generally have a DNA binding function and
are often present in transcription factors (Tadepally, Burger, & Aubry,
2008; Schmitz, Zimmer, & Bornberg-Bauer, 2016). The amplification
of these ZF genes is not particularly remarkable, since such expan-
sions are common among metazoa, often facilitated by the repetitive
nature of the domains (Schmitz et al., 2016). However, this increase
in ZF transcription factors most likely supported the regulation of the
many expanded gene families described above, thus allowing a diver-
sification of function, expression level, or specificity of the expanded
genes, for example, to a broader range of substrates, such as toxins or
food sources. Lineage-specific expansions in ZF gene families have also
been reported for other pest species, such as the Colorado potato bee-
tle (Schoville et al., 2018), the large milkweed bug, and the pea aphid
(Panfilio et al., 2017).

The role of myb/SANT-like DNA-binding domain-containing pro-
tein 3-like, which was strongly expanded from 6 to 39 in the B. german-
ica genome, is not conclusively resolved. However, it also appears to
regulate gene expression and protein synthesis in mammals (Barasch
etal, 2017).
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3 | SUMMARY

Many of the 93 expanded gene families within the genome of the
German cockroach, B. germanica, may help explain how this indoor pest
manages to thrive in unsanitary, inhospitable conditions. One mecha-
nism contributing to the expansion of gene families may be TE assisted
tandem duplication, for which evidence is presented in this study
for the important detoxification genes CYPé6. Seven expanded gene
families comprising a total of 252 genes (ancestrally 139) allow this
cockroach to metabolize a broad range of toxins, thus explaining its
resistance to many insecticides, in which these toxins are employed. A
further 10 expanded gene families (195 genes, ancestrally 51) function
in microbial defense and immune response, which illustrates how this
species thrives in septic conditions, often carrying many pathogens,
which threaten human health. Another major factor leading to the
success of this species, are its very generalist, omnivorous feeding
capabilities, that can in part be explained by the large expansion of
nine gene families related to the digestion of carbohydrates, proteins,
and fats (274 genes, ancestrally 109). A massive expansion in gene
families related to sensory perception (13 gene families, 398 genes,
ancestrally 128), especially gustatory and odorant perception (in
particular ionotropic receptors; Harrison et al. 2018; Robertson et al.
2018), allow the detection and differentiation of a very broad range
of chemical signals, thus possibly enabling the German cockroach to
accurately distinguish between toxins and food sources. These gene
family expansions were accompanied by a large expansion of C2H2
zinc finger transcription factors within the genome of B. germanica,
allowing an accurate, flexible regulation of these important gene
families. We report that members of several of these expanded gene
families show differential and complementary expression throughout
development. It is conceivable that a greater range of expression dif-
ferences may become apparent when individuals are challenged with
different toxin or dietary conditions. The resources presented here
may help researchers to better understand the mechanisms involved
in the resistance of B. germanica to insecticides and pathogens, thus
allowing the development of more specific and efficient strategies for
their control. Moreover, future comparisons with its sister species,
the Asian cockroach Blattella asahinai, may provide insight into the
evolution of synanthropy and specialized adaptations that make the

German cockroach such a successful commensal in human structures.

4 | MATERIALS AND METHODS

4.1 | Expanded gene families

The proteomes of 19 insect species (Nasonia vitripennis, Polistes
canadensis, Apis mellifera, Acromyrmex echinatior, Atta cephalotes,
Solenopsis invicta, Pogonomyrmex barbatus, Camponotus floridanus,
Linepithema humile, Harpegnathos saltator, Tribolium castaneum, Aedes
aegypti, Drosophila melanogaster, Rhodnius prolixus, Macrotermes
natalensis, Cryptotermes secundus, Zootermopsis nevadensis, Blattella
germanica, and Locusta migratoria; sources: Table 2) were clustered
using the hierarchical clustering algorithm MC-UPGMA (Loewen-

stein, Portugaly, Fromer, & Linial, 2008). Significant expansions and
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TABLE 2 Source websites and version numbers of 20 arthropod proteomes that were used for estimating gene family expansions

Species Source website Data files

P. barbatus http://hymenopteragenome.org genome 1.0, gff 1.2 (fixed)
D. melanogaster ftp://ftp.flybase.net/releases/FB2016_04/ CDS 6.12

H. saltator http://hymenopteragenome.org CDS3.3

R. prolixus ftp://ftp.ensemblgenomes.org/pub/metazoa/release-32/ genome RproC1, gff 1.32

T. castaneum

A. mellifera ftp://ftp.ensemblgenomes.org/pub/metazoa/release-32/
L. migratoria http://159.226.67.243/download.htm
N. vitripennis http://arthropods.eugenes.org/EvidentialGene/nasonia/genes/

P. canadensis
A. cephalotes http://hymenopteragenome.org

C. floridanus http://hymenopteragenome.org

https://www.ncbi.nlm.nih.gov/genome/216

https://www.ncbi.nIm.nih.gov/genome/?term=txid91411

genome 5.2, gff 5

genome 4.5, gff 4.5

genome 2.4.1, gff 2.4.1

CDS2.1

GCF_001313835.1 ASM131383v1
genome 1.0, gff 1.2

genome 3.3, gff 3.3

L. humile http://hymenopteragenome.org genome 1.0, gff 1.2
S.invicta http://hymenopteragenome.org genome 1.0, gff 2.2.3
A. echinatior http://hymenopteragenome.org CDS 3.8

A. aegypti ftp://ftp.ensemblgenomes.org/pub/metazoa/release-32/ CDS3

M. natalensis http://gigadb.org/dataset/100057 genome 1, gff 1.2

Z. nevadensis http://termitegenome.org
C. secundus

B. germanica

contractions (P < 0.05) were identified with CAFE v3.0 (Han, Thomas,
Lugo-Martinez, & Hahn, 2013). For further details see Harrison et al.
(2018).

4.2 | Identification of function

The putative function of genes within the expanded gene families
was estimated based on functional domains and sequence similarity
to known proteins in public databases. The proteome of B. german-
ica was annotated with functional domains using PfamScan v31 (Finn
et al.,, 2016). All protein sequences were blasted against the nonre-
dundant NCBI database (last accessed: 29-07-2014) using blastp. GO
terms were obtained with Pfam2GO and mapped to the genes of
expanded families. The enrichment of GO-terms associated with genes
of expanded families compared to all genes in the B. germanica pro-
teome was analyzed using the R package TopGO (Alexa & Rahnen-
flhrer, 2010), using the parent-child Fisher test.

4.3 | Analysis of expression profiles

Expression patterns were based on the 11 developmental stages (non-
fertilized egg, five embryonic stages, four nymph stages, and 5-day-old
adult females) described by Ylla et al. (2017). For each developmen-
tal stage, there were two biological replicates, with each replicate
containing a pool of individuals. All insects were fed ad libitum with
dog food and water. The expression count data were generated
for the corresponding transcriptomes of these 11 developmental
stages, which were prepared by Ylla, Piulachs, & Belles (2018). These
transcriptomes are publicly available at Gene Expression Omnibus
under the accession code GSE99785.

https://www.ncbi.nIm.nih.gov/bioproject/381866
https://www.ncbi.nIm.nih.gov/bioproject/427252

genome 1.0, gff 2.2
genome 1.0, gff 1.0
genome 1.1, gff 1.1

The raw counts were normalized using DESeq2 (Love, Huber, &
Anders, 2014). Z-scores were calculated within each developmental
stage across all genes in expanded families using the scale function and
plotted in R (version 3.4.2) (R Core Team, 2017).

4.4 | Repetitive content

Repeat content had previously been annotated for the B. german-
ica genome (Harrison et al.,, 2018). In this study, we assessed the
repeat content of the 10 kb flanking regions of genes as follows: (i)
The flanking regions of each gene were extracted; (ii) any CDS from
neighbouring genes was removed such that only intergenic sequences
were considered as flanking sequences; (iii) the proportion of flanking
sequences covered by repeats was calculated, differentiating between
low complexity repeats, simple repeats, and the three major classes of
interspersed repeats: LINEs, LTRs, and DNA-transposons; and (iv) the
repeat content was Z-score transformed, such that heat maps reflect
deviation in repeat content from species averages. Steps (i)-(iii) were
carried out with the bedtools (Quinlan & Hall, 2010) commands flank,
subtract, and coverage, respectively. The alignments for these analyses
were carried out with PASTA (Mirarab et al., 2015) and phylogenetic
trees constructed with FastTree v2.1.7 (Price, Dehal, & Arkin, 2010).
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