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Abstract

The German cockroach, Blattella germanica (L.) (Blattaria: Blattidae) harbored diverse microorganisms in the 
digestive tract, including bacteria, fungi, viruses, archaea, and protozoa. This diverse community maintains a 
relatively stable balance. Some bacteria have been confirmed to play crucial roles in the insect’s physiology, 
biochemistry, and behavior. Antibiotics can effectively eliminate bacteria and disrupt the balance of gut micro-
biota, but the time-course of this process, the structure of the new microbial community, and the dynamics of 
re-assemblage of a bacterial community after antibiotic treatment have not been investigated. In the present 
study, antibiotic (levofloxacin and gentamicin) ingestion reduced bacterial diversity and abundance in the cock-
roach gut. Within 14 d of discontinuing antibiotic treatment, the number of culturable gut bacteria returned 
to its original level. However, the composition of the new bacterial community with greater abundance of 
antibiotic-resistant Enterococcus and Dysgonomonas was significantly different from the original community. 
Network analysis showed that antibiotic treatment made the interaction between bacteria and fungi closer 
and stronger in the cockroach gut during the recovery of gut microorganisms. The study on the composition 
change, recovery rules, and interaction dynamics between gut bacteria and fungi after antibiotic treatment are 
helpful to explore gut microbes’ colonization and interaction with insects, which contributes to the selection of 
stable core gut bacteria as biological carriers of paratransgenesis for controlling Blattella germanica.
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The German cockroach, Blattella germanica (L.), is a common in-
door sanitary pest and can transmit a variety of pathogenic micro-
organisms and parasites (Graczyk et al. 2005, Salehzadeh et al. 2007, 
Vazirianzadeh et  al. 2014, Zhang and Yang 2019). Because of its 
rapid development, high fecundity, adaptability to the human envir-
onment and pervasive resistance to chemical pesticides, the German 
cockroach has become an important target for pest control in indoor 
environments (Zhang et al. 2014, Zhang et al. 2018b, Yang et al. 
2019, Pan and Zhang 2020).

Many insects host a large number of microorganisms in the gut, 
including bacteria, fungi, viruses, archaea, and protozoa (Gijzen 
et al. 1991, Moya et al. 2009, López-Sánchez et al. 2009, Hongoh 
2010, Zhang and Zhang 2018). Bacteria are the most diverse and 
abundant taxa, and the gut lumen provides suitable conditions for 
the formation of bacterial biofilm (Parsek and Singh 2003, Kim et al. 
2014, Zhang et al. 2020b). Gut bacteria have diverse functions in di-
gestion and absorption of nutrients, including synthesis of vitamins, 

amino acids, and nitrogen metabolism, as well as in defense against 
pathogen colonization and reinforcement of the host immune system 
(Dillon and Dillon 2004, Sabree et al. 2009, Ben-Yosef et al. 2010, 
Feldhaar 2011, Weiss and Aksoy 2011, Douglas 2015, Zhang and 
Zhang 2018). Fungi are also abundant in the intestinal tract of in-
sects, where they help the host synthesize amino acids, proteins, and 
degrade cellulose. For example, yeast-like symbionts in anobiid bee-
tles can synthesize proteins and provide essential amino acids for 
the host insect and participate in the synthesis of sterols (Noda and 
Koizumi 2003). Gloeophyllum sepiarium can secrete over 20 en-
zymes such as amylase, cellulase, hemicellulase, and lignase to help 
termites degrade cellulose and lignocellulose (Noda and Koizumi 
2003). And some fungi can also degrade harmful substances such as 
nicotine (Eberhardt 1995, Frankenburg and Vaitekunas 1995, Wang 
et al. 2003). A dynamic balance is achieved in the gut between bac-
teria and fungi through biofilm formation, quorum sensing signaling 
molecules, and antimicrobials secreted by fungi and bacteria (Kim 
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et  al. 2014, Xiang and Huang 2017). This balance is affected by 
many external factors, such as food, temperature and especially ex-
ogenous antibiotics (Pérez-Cobas et al. 2015).

Several strategies are used to remove gut bacteria in insects 
(Ohtaka 1991, Prosser and Douglas 1991, Tegtmeier et  al. 2015, 
Rosas et al. 2018), such as sterilizing the egg surfaces and rearing 
the hatchlings under aseptic conditions (Tegtmeier et al. 2015). This 
method is not widely used because of the strict aseptic culture con-
ditions for the larvae. In contrast, the gut bacteria are quickly and 
easily removed by antibiotics, thus antibiotics are commonly used 
(Chen and Purcell 1997, Raymond et al. 2009, Sharon et al. 2010, 
Llop et al. 2018, Rosas et al. 2018, Zhang et al. 2018a). Antibiotics 
are most often used with the method of ingestion, and when used for 
eliminating bacteria, they usually have many side-effects on insects, 
including stress, changes in the activity of metabolic enzymes and 
immune responses (Woo et al. 1999), suppression of growth, devel-
opment and reproduction, and higher mortality (Chen and Purcell 
1997, Raymond et al. 2009, Sharon et al. 2010, Llop et al. 2018). 
Moreover, antibacterial agents can selectively eliminate bacteria, 
facilitating the proliferation of fungi and other gut microbes.

Many studies have investigated the composition and community 
structure of gut bacteria in insects. Few investigations, however, have 
examined symbiotic gut fungi and their interactions with bacteria, 
and the resulting dynamic balance represented in species-specific 
microbial communities. In this article, we analyzed the changes in 
community composition, recovery rules of gut bacteria and fungi, 
and the bacterial-fungal interaction during the process of gut bac-
terial recovery of German cockroaches after antibiotic treatment, 
which is very useful for studying the microorganism colonization 
and interaction with insects. Recently, new biological control tech-
nologies based on the interaction between insects and symbionts 
have gradually developed, such as reintroducing genetically modified 
symbionts to secrete toxic proteins in the hosts (Daily and Johanna 
2012). The symbiont Pantoea agglomerans in the mosquito midgut 
was genetically modified to express anti-malaria proteins to disturb 
malaria development, thereby greatly decreased the plasmodium 
carrying rate of mosquitoes (Wang et al. 2012). Our study could pro-
vide a stable biological carrier for paratransgenesis through the selec-
tion of stable gut bacteria for the biological control of B. germanica.

Materials and Methods

Insects Collection
German cockroaches were supplied by the Key Laboratory of 
Animal Resistance Biology of Shandong Province and maintained 
in a growth chamber. Culture chambers were adjusted to 27 ± 1°C, 
60 ± 5% relative humidity (RH), and a photoperiod of 12:12 (L:D) 
h.  The insects fed on rat pellets (Shandong Experimental Animal 
Center, Jinan, China). All experimental insects were adult males.

Preparation of Gut Samples
In previous studies of our lab, a variety of antibiotics have been 
studied to remove the gut bacteria of B. germanica, among which the 
combined use of gentamicin and levofloxacin had the best removal 
effect (Shi et al. 2017). In the experimental group, adult male cock-
roaches were provided with sterile water fortified with levofloxacin 
(62  µg/ml) and gentamicin (62  µg/ml) and sterile rat pellets for 4 
d in sterile conditions (B. germanica was cultivated in a sterilized 
beaker, and the opening of the beaker was sealed with three steril-
ized layers of gauze). The control cockroaches were provided with 
sterile water. In preparation for gut dissection at specific intervals 

after discontinuing the antibiotics (see below): food was cleared 
from the digestive tract of cockroaches by starving them for 24 h; 
their surfaces were disinfected with 75% ethanol for 90 s, and then 
thoroughly washed with sterile water to remove the disinfectant.

Gut Microbial Cultures
The digestive tracts of a total of 120 cockroaches were collected: a 
control (S0), and 2 d (S2), 4 d (S4), 6 d (S6), 8 d (S8), 10 d (S10), 12 d 
(S12), and 14 d (S14) after stopping antibiotic treatment. Each group 
consisted of five cockroach guts and replicated three times (8 groups 
× 5 cockroaches per group × 3 replications = 120 cockroaches). Gut 
Samples were homogenized in 1 ml of sterile water and ground uni-
formly under sterile conditions using a vitreous bar with a tapered 
tip (Jinan Zhongchu Hengtong Biotechnology Co., Ltd., Jinan, 
China). All samples were vortex-mixed for 1 min and centrifuged at 
98 g for 5 min. A series of dilutions were carried out and multiple di-
lution gradients were selected for the plate culture. The supernatant 
(200 µl) was collected and streaked on Potato Dextrose Agar (PDA) 
medium using an applicator. The nystatin was added into the cul-
ture medium to inhibit the growth of mycete and yeast. The number 
of cultured bacterial colony was recorded at 48  h. Bacterial and 
fungal colonies were distinguished based on differences in the size 
and morphology of colonies and only the bacterial colonies were 
counted (Renata et al. 2013).

High-Throughput Sequencing and Analysis of Gut 
Microbiota
The guts of a total of 360 cockroaches were collected a control (S0) 
and 1 d (S1), 2 d (S2), 6 d (S6), 10 d (S10), and 14 d (S14) after stop-
ping antibiotic treatment. Each of these six groups consisted of 20 
guts and replicated three times (360 cockroaches).

DNA was extracted using the K2306 Karroten Microbial 
Genomic DNA extraction kit (Novoprotein Scientific Inc., Shanghai, 
China). The primers for amplification of the 16S rRNA gene were 
338F-806R (5′-ACTCCTACGGGAGGCAGCAG-3′ and 5′-GGACT
ACHVGGGTWTCTAAT-3′). The 16S rRNA PCR was performed in 
a total volume of 20 µl containing 4 µl of 5 × FastPfu buffer, 2 µl of 
dNTPs (2.5 mM), 0.8 µl of Forward Primer (5 µM), 0.8 µl of Reverse 
Primer (5 µM), 0.4 µl of FastPfu Polymerase, 0.2 µl of BSA, 10 ng of 
DNA template and deionized ultrapure water (to 20 µl). The primers 
for ITS sequencing were ITS1F-ITS2R (5′-CTTGGTCATTTAGAG
GAAGTAA-3′ and 5′-GCTGCGTTCTTCATCGATGC-3′). The ITS 
PCR was performed in a total volume of 20 µl containing 2 µl of 10 × 
Buffer, 2 µl of dNTPs (2.5 mM), 0.8 µl of Forward Primer(5 µM), 
0.8  µl of Reverse Primer(5  µM), 0.2  µl of Taq Polymerase, 0.2  µl 
of BSA, 10 ng of template DNA and deionized ultrapure water (to 
20 µl). The PCR conditions were as follows: 95°C for 3 min, 95°C 
for 30 s, 55°C for 30 s and a final elongation step at 72°C for 10 min 
of 27 cycles.

Raw fastq files were demultiplexed, quality-filtered by 
Trimmomatic and merged by FLASH (http://ccb.jhu.edu/software/
FLASH) according to the following criteria: the reads data were 
truncated at any site with an average quality score of less than 
20 within 50 bp sliding windows, allowing two nucleotides to be 
mismatched and removing ambiguous bases in primer-matching, 
splicing sequences overlap longer than 10 bp and removing unspliced 
sequences. Operational taxonomic units (OTUs) were clustered with 
97% similarity cutoff using UPARSE (version 7.1 http://drive5.
com/uparse/) and chimeric sequences were identified and removed 
using UCHIME. The community richness indices (Chao1 and Ace) 
and diversity indices (Shannon and Simpson) were estimated using 
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MOTHUR (http://www.mothur.org). We used the UniFrac server for 
community comparisons.

Network Analysis
In order to study the relationship among the gut flora of B. germanica 
after stopping the antibiotic treatment, the potential relationship be-
tween the bacterial and fungal taxa was described by network ana-
lysis using the CoNet plug-in in Cytoscape (Shannon et  al. 2003, 
Soffer et al. 2015). In order to reduce the complexity of calculation 
and ensure the accuracy of taxonomic information, network analysis 
was conducted at the genus level of these two microbiomes. To ex-
plore all the pairwise associations and correlation scores (Spearman 
correlation, Pearson correlation, Kullback-Leibler dissimilarity, 
Bray-Curtis dissimilarity, and mutual information) were calculated 
(Faust and Raes 2012, Faust et al. 2012). The Brown method inte-
grated the P values of the five methods, only significant correlations 
were retained (P < 0.05) (Soffer et al. 2015). After the Brown merging 
P values, the Benjamini–Hochberg multiple tests were performed as 
a correlation (Hu et al. 2017). We import the obtained correlation 
into the Gephi platform and use the Frucherma Reingold algorithm 
for visualization (Bastian et al. 2009). Though the plug-in Network 
Analyzer in Cytoscape to calculate the network topology param-
eters, the degree, betweenness centrality, and closeness centrality of 
each node in the network (Assenov et al. 2008). The clustering coeffi-
cient and network density were selected to reflect changes in gut mi-
crobial community combination (Barberan et al. 2012), and degree, 
betweenness centrality, and closeness centrality were used to explore 
the key hub of the network (Sporns et al. 2007). Network analysis 
was used to explore the relationship between bacteria and fungi in 
gut after antibiotic treatment.

Statistical Analysis
The statistical analysis was performed using SPSS version 19.0 
for Windows (IBM, Armonk, NY). The independent sample T-test 
was performed to assess the significant difference in the number of 
culturable bacteria between each treatment group and control group. 
Results with P < 0.05 between groups were considered statistically 
significant. Using a one-way ANOVA to examine the significant dif-
ference of richness and diversity indices of 18 bacterial samples or 15 
fungal samples. P < 0.05 is considered a significant difference. The 
Kruskal–Wallis H test with Benjamini–Hochberg false discovery rate 
(FDR) correction was used to evaluate the relative abundance differ-
ences of bacteria and fungi among multiple groups implemented in 
the R software.

Availability of Data and Materials
All nucleotide sequences from this study were uploaded to the NCBI 
SRA (Sequence Read Archive) database, and the accession numbers 
are PRJNA594114 and PRJNA594155.

Results

Culturable Bacteria After Antibiotic Treatment
The 4 d of continuous antibiotic treatment was effective at reducing 
the number of culturable bacteria in the gut of German cockroach 
males from Fig.  1. After stopping the antibiotic treatment, how-
ever, the number of culturable gut bacteria increased rapidly and 
recovered to the pretreatment level on 14 d (Fig. 1). The result of the 
gut count is not the exact number of gut bacteria, it only shows the 
number of gut bacteria that can be cultured in vitro.

Microbial Community Organization Before and After 
Antibiotic Treatment
Bacteria
After pyrosequencing, 949,839 raw sequences and 2,935 OTUs were 
obtained from the 18 samples (three replicates of each: a control, 
and 1, 2, 6, 10, and 14 d after stopping antibiotic treatment).

The rarefaction curves tended to asymptote, showing saturation 
of the sequencing data, substantial abundance of bacterial reads, and 
sufficient depth for analysis of the diversity of the bacterial commu-
nity (Fig. 2). The rarefaction curves also showed variation in OTU 
density over time after withdrawal of the antibiotics. OTU density of 
the cockroach gut was highest for the treated cockroaches (S0) and 
lowest 1 (S1) and 2 (S2) day after the 4-d antibiotic treatment. These 
curves also indicated that the bacterial richness in the gut lumen of 
the German cockroach increased with time since discontinuing the 
antibiotic treatment. Nevertheless, the bacterial richness remained 
low compared with the controls even in 14th day after stopping the 
antibiotic treatment (Fig. 2).

Nineteen phyla and 122 genera of bacteria were detected. 
Sequences that could not be classified were assigned ‘no rank’. One-
way ANOVA comparing the six treatment groups indicated that 
the number of OTUs and the bacterial diversity indices were sig-
nificantly different among the groups (P  < 0.05) but the bacterial 
richness indices were not significantly different (P > 0.05) (Table 1).

Using Bray-Curtis distance based on pyrosequencing data, we 
conducted PCA, PCoA, and NMDS analyses. The PCA score map 
indicated that S0, S10, and S14 were grouped on the left of the graph 
and separated along PC1, which explained 46.35% of the total vari-
ation, from S1 and S2 (Fig. 3). Treatment group S0 separated from 
S2, S6, S10, and S14 along PC2, which explained 35.19% of the 
total variation (Fig. 3). Overall, the gut bacterial community soon 
after the discontinuation of antibiotics (on the 1st and 2nd day) sep-
arated from the remaining three groups (on the 6th, 10th, and 14th 
day), which were more similar to each other, and S0 separated from 
the latter groups (Fig. 3). This pattern was generally confirmed with 
PCoA and NMDS analyses (Supp Fig. S1 [online only]).

The relative abundance of 16S rRNA sequences, grouped at 
the phylum level, are shown in Fig.  4. Firmicutes, Bacteroidetes, 
Fusobacteria, Actinobacteria, and Planctomycetes were most rep-
resented, with Firmicutes being the most abundant in the control 
cockroaches (41.4%), followed by Bacteroidetes (35.0%). The 
most abundant of the gut microbiota on the 1st and 2nd day after 
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Fig. 1. Number of culturable bacteria (log-transformed) from the guts of 
German cockroach adult males on different days after discontinuing the 
availability of antibiotics in their drinking water. 0 indicates males provide 
sterile water, the other numbers indicate the number of days to stop antibiotic 
treatment. All treatments were compared to the 0 treatment, with significant 
differences indicated as follows: ** (0.001 < P ≤ 0.01), *** (P ≤ 0.001). Each bar 
represents the mean of five guts and ±SEM is shown.
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discontinuing the antibiotics were the Firmicutes (65.0 and 60.9%, 
respectively), but in the last three groups (the 6th, 10th, and 14th 
day), the Bacteroidetes were most abundant (40.1, 45.3, and 45.9%) 
and Fusobacteria were second in abundance (30.2, 26.5, and 22.3%) 
was the second-highest (Fig. 4, Supp Table S1 [online only]).

The relative abundance of the major bacterial genera is shown 
in Fig. 4. Bacteria in the gut lumen were most diverse in the control 
cockroaches that were not exposed to antibiotics, as also represented 
in Table  1. Antibiotic treatment for 4 d dramatically reduced the 
bacterial diversity, but the diversity of the bacterial community grad-
ually increased with time after stopping the antibiotic treatment; 
nevertheless, even after 14 d, bacterial diversity did not return to 
the level of the control cockroaches (Fig. 4). This indicates that anti-
biotics caused an irreversible change in the gut bacterial community, 
for at least 14 d.

The relative abundance of the 15 most dominant bacterial genera 
was subjected to statistical analysis among the six treatment groups 
(Fig.  5). For 10 genera, there were statistically significant differ-
ences (P < 0.05) among the six groups. The most common pattern 
was for some genera that were represented at low relative abun-
dance in the control cockroaches (e.g., Candidatus_Soleaferrea, 
Anaerotruncus, Enterococcus, Desulfovibrio) to undergo dra-
matic but transient increases or declines in abundance, but return 
to their original levels after 14 d on antibiotics-free water. Some 
genera, however, remained at lower abundance after 14 d (e.g., 
Tyzzerella_3, Parabacteroides, Alistipes), whereas others attained 
higher relative abundances after 14 d without antibiotics (e.g., 
Fusobacterium, Dysgonomonas) (Fig. 5).

Fungi
After pyrosequencing, 698,568 raw sequences and 1,031 OTUs were 
obtained from the 15 fungal samples. A total of eight phyla and 180 
genera of fungi were detected. Sequences that could not be classified 
were assigned ‘no rank’. Using one-way ANOVA for comparison, the 
number of OTUs and the fungus richness indices were significantly 
different (P < 0.05) (Table 2). The fungus samples on the 2nd day 
were unqualified and were not sequenced.

The rarefaction curves tended to asymptote, suggesting that 
the depth of the sequencing data was sufficient (Fig.  2). The 

relative abundances of the fungi at the phylum and genus levels 
are shown in Fig. 6. The 15 most dominant genera are shown in 
Fig.  7. The most abundant genus of fungi was Candida, which 
increased from 41.4% in control cockroaches up to 96.7% of all 
sequences 6 d after stopping the antibiotic treatment; it declined 
to 19.3% 8 d later (Fig. 6, Supp Table S3 [online only]). Of the 
15 fungus genera, only three genera showed statistically signifi-
cant changes with respect to antibiotic treatment (unclassified_k_
Fungi, Mortierella, and unclassified_f_norank_o_Pleosporales; P 
< 0.05).

Dynamic Network Between Fungi and Bacteria
Five networks represent the interactions among microbes in control 
cockroaches and during the recovery of the microbial community in 
the gut of German cockroaches after antibiotic treatment (Fig. 8). 
These networks differentiate based on the number of bacterial and 
fungal nodes and the number of edges of microbial interactions. 
Compared to the control group, the clustering coefficient and net-
work density of the antibiotic treatment groups were respectively 
increased by 0.039, 0.024, 0.020, 0.039 and 0.055, 0.078, 0.072, 
0.063, which indicated that gut microbiome associations were more 
tightened with the antibiotic treatment (Table 3). The fungi in the 
networks of the T6 was reduced by 50 nodes; the T10 and the T14 
were increased by 19 and 64 nodes than the previous group. The 
bacteria in the networks of the T6, the T10, and the T14 were in-
creased by 13, 9, and 4 nodes than the previous group. It also dis-
played that the edges linking bacteria to fungi in the networks of the 
T6 and T10 were reduced by 13 and 7 edges, the T14 was increased 
by 294 edges, the edges linking bacteria to bacteria in the networks 
of the T6, the T10, and the T14 were increased by 38, 1 and 31 
edges, the edges linking fungi to fungi in the networks of the T6 was 
reduced by 355 edges and the T10 and T14 were increased by 371 
and 932 edges than the previous group (Table 3).

The network analysis demonstrated that antibiotics interfered 
with the balance between bacteria and fungi and caused dysbiosis: 
the percentage of fungi–fungi and fungi–bacteria interactions in-
creased, while bacteria–bacteria interactions were reduced. In terms 
of overall relationships, antibiotic treatment leads to a closer rela-
tionship between gut microflora.

Fig. 2. Rarefaction analysis of the different bacterial (a) and fungal (b) samples, including a control (S0), and 1 (S1), 2 (S2), 6 (S6), 10 (S10), and 14 (S14) d after 
stopping antibiotic treatment. Sobs represent the observed number of species.
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Discussion

Antibiotic treatment is a common method to obtain aseptic insects 
(Woo et  al. 1999, Yong-Ming et  al. 2006, Ben-Yosef et  al. 2008, 
Rosas et al. 2018). The combination treatment of levofloxacin and 
gentamicin on German cockroaches for 4 d was effective in re-
moving gut bacteria. Both cultivable bacteria and high-throughput 
sequencing showed a very low level of bacterial flora. The number 
of the cultivable gut bacteria had basically recovered to the original 
level on the 14th day after stopping antibiotic treatment, but there 
were significantly different in the composition of the gut microbial 
community, which was consistent with the studies of the rifampicin 
treatment on German cockroaches. Rifampin treatment experi-
ment showed that bacterial diversity and richness were not com-
pletely recovered to the original level after stopping antibiotic for 
10 d (Rosas et  al. 2018). In addition, the composition of the gut 
microbiota of cockroaches was different after different antibiotic 
treatments. Our study showed that after the combined utilization of 
gentamicin and levofloxacin, the relative abundance of Candidatus, 
Soleaferrea, Fusobacterium, Bacteroides, and Anaerotruncus in 
the gut of cockroaches was increased. After the treatment of ri-
fampicin, the abundance of Fusobacterium and Desulfovibrio was 
relatively high (Rosas et al. 2018). After the use of doxycycline, the 
abundance of Alphaproteobacteria in the gut of cockroaches was 
relatively high (Pietri et  al. 2018). After the use of vancomycin, 
the abundance of Enterobacteriaceae, Yersiniaceae, Budviciaceae, 
and Enterobacterales in the gut of cockroaches was relatively high 
(Domínguez-Santos et al. 2020). Different antibiotics had different 
effects on the removal of gut microbes of German cockroaches, but 
the gut microbes of German cockroaches could recover to the ori-
ginal level after stopping antibiotic treatment (Rosas et  al. 2018, 
Domínguez-Santos et al. 2020).

When gut bacteria were removed by antibiotics, those bacteria 
that are not susceptible to antibiotic and fast-growing bacteria 
may utilize the limited oxygen and other resources to grow rapidly 

and become dominant in the gut temporarily, such as Candidatus, 
Soleaferrea, and Anaerotruncus (Wertz and Breznak 2007, Ryu et al. 
2008, Hassan et al. 2011, Yogurtcu and Tuncer 2013, Huang et al. 
2016, Abdolmaleki et al. 2019, He et al. 2020). The abundance of 
Enterococcus, Dysgonomonas, and Desulfovibrio were significantly 
increased in the recovery period and most of them showed resist-
ance to different kinds of antibiotics. Enterococcus is well known 
for resistance to gentamicin, streptomycin, chloramphenicol, tetra-
cycline, and streptomycin; Desulfovibrio are resistant to penicillin 
and rifampicin; Dysgonomonas are resistant to various beta-
lactams, erythromycin, aminoglycosides, and fluoroquinolones, but 
was susceptible to clindamycin, minocycline, and chloramphenicol 
(Dzierzewicz et al. 2001, Hironaga et al. 2008). To better adapt to 
the gut environment, Enterococcus can produce tyramine, which is 
related to tyrosine metabolism, to enhance the adhesion between 
bacteria and guts (Ladero et  al. 2013, Pérez-Cobas et  al. 2013). 
Dysgonomonas, Fusobacterium, etc., can rapidly proliferate and oc-
cupy a certain proportion, which is related to the basic ecological 
niche they have realized (Mikaelyan et  al. 2016). Interestingly, al-
though Parabacteroides is resistant to tetracycline and β-lactam 
antibiotics, its abundance decreased because these bacteria that pos-
sessed the gene ermF and beta-lactamases (BLAs) were more sensi-
tive to the aminoglycoside antibiotic gentamicin (Boente et al. 2010, 
Brook et al. 2013). In addition, we hypothesized that gut bacteria 
can not completely recover after treatment with antibiotics, even 
some taxa that are sensitive to antibiotics may remain in the guts or 
feces at very low abundance and can colonize their gut niche once 
again after antibiotic pressure was removed. In fact, similar results 
had also been showed in Zootermopsis angusticollis, which revealed 
a permanent reduction in bacterial diversity after rifampicin treat-
ment (Rosengaus et al. 2011).

The interaction between bacteria and fungi is mainly antag-
onistic and achieves a dynamic balance. A  variety of bacteria in 
the gut of B. germanica can produce antimicrobial substances that 
have a broad spectrum for fungi or bacteria, for example, Bacillus 

Table 1. Richness and diversity indices of 18 bacterial samples representing three replicates each of six groups

 Alpha diversity

ID Coverage Threshold Number of OTUs ACE Chao Shannon Simpson

S0-1 0.999245 0.03 385 394 398 4.37 0.0333
S0-2 0.999344 0.03 392 401 403 4.59 0.0279
S0-3 0.999114 0.03 395 408 410 4.59 0.0227
S1-1* 0.999475 0.03 68 80 80 1.57 0.3292
S1-2 0.998753 0.03 116 207 160 2.37 0.1548
S1-3 0.999081 0.03 104 136 125 2.22 0.1449
S2-1* 0.999442 0.03 74 91 91 1.37 0.4586
S2-2 0.999475 0.03 92 106 103 1.62 0.3281
S2-3 0.999574 0.03 66 78 79 1.74 0.2514
S6-1 0.999344 0.03 129 143 143 2.49 0.1514
S6-2 0.999213 0.03 130 153 153 2.64 0.1350
S6-3 0.999410 0.03 107 121 145 2.44 0.1599
S10-1 0.999344 0.03 138 152 165 2.72 0.1361
S10-2 0.999344 0.03 145 160 156 2.75 0.1288
S10-3 0.999278 0.03 149 167 168 2.95 0.1091
S14-1 0.999475 0.03 169 178 177 3.30 0.0718
S14-2 0.999377 0.03 143 157 159 3.21 0.0774
S14-3 0.999541 0.03 133 143 140 3.17 0.0828
P value   0.018 0.063 0.097 0.015 0.004

OTUs were defined at the 97% similarity level (the threshold is 0.03). The 18 samples represent three replicates each of six treatment groups that include a con-
trol (S0), and 1 (S1), 2 (S2), 6 (S6), 10 (S10), and 14 (S14) d after stopping the antibiotics treatment. Sample S1-1 (*) and S2-1 (*) were discarded as an outlier in 
community composition relative to the other two replicates, and it was also excluded from all subsequent analysis.
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Fig. 3. Principal components analysis showing the similarity of the 16 bacterial communities based on the Bray-Curtis distance. Principal components (PCs) 
1 and 2 explained 46.35 and 35.19% of the variance, respectively. The 16 bacterial samples, representing three replicates each of six treatment groups that 
included a control (S0), and 1 (S1), 2 (S2), 6 (S6), 10 (S10), and 14 (S14) d after stopping antibiotic treatment. One replicate in the S1 and the S2 treatment group 
was excluded from analysis as an outlier relative to the other two replicates in the same treatment group. In S0, one replicate is obscured by another replicate.
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Fig. 4. Bacterial composition of the different communities at the Phylum (a) the Genus (b) level. The relative read abundances of different bacterial genera within 
the different communities are shown. Taxa with an abundance <1% were included in ‘others’. The bacterial samples including a control (S0), and 1 (S1), 2 (S2), 6 
(S6), 10 (S10), and 14 (S14) d after stopping the antibiotic treatment.
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Fig. 5. Differences at the Genus level of bacterial relative abundance across experimental groups after antibiotic treatment was discontinued. The bar length for 
each genus indicates its average relative abundance in each sample group, and the different colors indicate the six groups (the combined three replicates of 
each of the six treatment groups included a control (S0), and 1 (S1), 2 (S2), 6 (S6), 10 (S10), and 14 (S14) d after stopping the antibiotic treatment). The P value is 
shown, and * indicates that the six groups are significantly different from each other (P < 0.05).
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and Pseudomonas had significant inhibitory effects on Beautalia 
bassiana and Lactobacillus and Weissella can produce bacteri-
ocins, adhesion inhibitors, and organic acids to inhibit the grow 
of bacteria (Stiles and Holzapfel 1997; Tang et  al. 2005; Allaker 
and Douglas 2009; Zhang et al. 2012, 2013, 2020a; Huang et al. 
2013). On the contrary, the fungi can also produce antibiotics such 
as penicillin and streptomycin to inhibit bacterial growth (Kester 
et  al. 2011). Fungi and bacteria usually need compete adhesion 
sites to build biofilms in an insect’s gut by competing nutrients 
and secreting substances and evade the host’s immune recognition 
(Peleg et  al. 2008, Peters et  al. 2010, Huang et  al. 2016, Förster 
et al. 2016). When most bacteria in the gut were removed by anti-
biotics, fungi could get more adhesion sites to grow and this must 

be the main reason that the abundance of Candida was so high in 
the early stage of the recovery group. In addition, the balance was 
also regulated by the immune system of the insect. Innate immunity 
based on antimicrobial peptides (AMPs) and reactive oxygen (ROS) 
can effectively eliminate harmful gut bacteria by shaping symbiotic 
communities (Buchon et  al. 2009, Ryu et  al. 2010). In fruit flies, 
the Toll pathway is mainly response to fungi and Gram-positive 
bacteria. While the Imd pathway, which is similar to the mamma-
lian TNF and TIR-domain-dependent TLR pathway, mainly re-
sponse to Gram-negative bacteria (Bosco-Drayon et al. 2012, Akira 
et al. 2006, Lemaitre and Hoffmann 2007, Ferrandon et al. 2007, 
Royet and Dziarski 2007, Vallabhapurapu and Karin 2009, Neyen 
and Lemaitre 2016). The increasing of clustering coefficient and 
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Fig. 6. Composition of the different fungal communities at the Phylum (a) the Genus (b) level. The relative read abundances of different fungus genera within 
the different communities are shown. Taxa with an abundance <1% were included in ‘others’. These samples, including a control (S0), and 1 (S1), 6 (S6), 10 (S10), 
and 14 (S14) d after stopping the antibiotic treatment.

Table 2. Richness and diversity indices of 15 fungal samples representing three replicates each of five groups

 Alpha diversity

ID Coverage Threshold Number of OTUs ACE Chao Shannon Simpson

S0-1 1.000000 0.03 55 67 65 0.26 0.9175
S0-2 1.000000 0.03 42 21 19 0.20 0.9315
S0-3 0.999936 0.03 43 39 39 0.98 0.4994
S1-1 1.000000 0.03 77 42 38 0.89 0.4702
S1-2 1.000000 0.03 96 76 76 1.24 0.4695
S1-3 0.999904 0.03 57 43 42 0.90 0.4692
S6-1 0.999458 0.03 55 178 178 1.72 0.3003
S6-2 0.999841 0.03 14 181 181 2.44 0.2585
S6-3* 0.999872 0.03 37 62 62 0.49 0.8178
S10-1 0.999681 0.03 33 55 55 1.99 0.2058
S10-2* 1.000000 0.03 76 42 42 2.12 0.2370
S10-3 0.999681 0.03 36 43 44 1.58 0.3515
S14-1 0.999681 0.03 175 77 77 2.93 0.1267
S14-2 0.999936 0.03 181 96 96 1.39 0.4890
S14-3* 0.999522 0.03 54 59 60 1.51 0.4276
P value   0.008 0.009 0.009 0.084 0.010

OTUs were defined at the 97% similarity level (the threshold is 0.03). The 15 samples represent three replicates each of five treatment groups that include a 
control (S0), and 1 (S1), 6 (S6), 10 (S10), and 14 (S14) d after stopping the antibiotics treatment. Three samples indicated with * (S6-3, S10-2, and S14-3) were 
discarded as outliers in community composition relative to the other two replicates in their respective groups, and they were also excluded from all subsequent 
analysis.
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network density indicated that bacteria and fungi in the cockroach 
gut established a closer relationship after antibiotic treatment. We 
concluded that it was the consequence of multi-factors by anti-
biotics to tighten the core microbes and lose the low-abundance of 
microbes that temporarily host in the gut.

Conclusions
In summary, antibiotic treatment significantly reduced the di-
versity and abundance of gut bacteria, changed the composition 
of the gut microbiota, and made the relationship of gut micro-
organisms closer, which is useful for studying the gut microbes’ 

Fig. 7. Differences at the Genus level of fungal relative abundance across experimental groups after antibiotic treatment was discontinued. The bar length for each genus 
indicates its average relative abundance in each sample group, and the different colors indicate the six groups (including a control (S0), and 1 (S1), 6 (S6), 10 (S10), and 
14 (S14) d after stopping the antibiotic treatment). The P value is shown, and * indicates that the five groups are significantly different from each other (P < 0.05).
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colonization and interaction with host insects. Meanwhile, our 
study could also lay the foundation for the exploitation of new 
control strategies based on core gut flora. It can help find po-
tential core microbes from cockroach guts as stable biological 

carriers of paratransgenesis for the biological control of 
B. germanica.

Supplementary Data

Supplementary data are available at Journal of Economic 
Entomology online.

Fig. S1 Sample sorting analysis. Study on bacterial community 
composition of 16 samples by PCoA analysis based on Bray-Curtis 
distance. Principal components (PCs) 1 and 2 explained 45.7% and 
33.72% of the variance, respectively. NMDs showing the differ-
ence of bacterial communities according to Bray-Curtis distance. 
These samples, including a control (S0), and 1 (S1), 2 (S2), 6 (S6), 
10 (S10) and 14 (S14) days after stopping antibiotic treatment.
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Fig. 8. The networks visualize antibiotic treatment effects on the co-occurrence pattern between bacteria and fungi in the intestines of German cockroach. The 
node size is proportional to the abundance of taxa, and the nodes filled in red are bacterial taxa and in blue are fungi taxa. The edges are colored according to 
interaction types; positive correlations are labeled with green and negative correlations are colored in red. The five groups that include a control (T0), and 1 (T1), 
6 (T6), 10 (T10), and 14 (T14) d after stopping the antibiotic treatment.

Table 3. Topological indices of each network in Fig. 8

T0 T1 T6 T10 T14

Clustering coefficient 0.804 0.843 0.828 0.824 0.844
Network density 0.072 0.127 0.150 0.144 0.135
Number of nodes 156 114 81 109 177
Number of edges 869 815 485 850 2,107
Number of fungal nodes 47 82 36 55 119
Number of bacterial nodes 109 32 45 54 58
Number of edges linking  

bacteria to fungi
332 183 170 163 457

Number of edges linking 
fungi to fungi

212 596 241 612 1,544

Number of edges linking  
bacteria to bacteria

325 36 74 75 106

T0 indicates feeding sterile water, the other numbers indicate the number of 
days to stop antibiotic treatment.
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