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Abstract

BACKGROUND: Responses to sex pheromones are commonly antagonized by pheromone components of closely related spe-
cies. Pheromone antagonism has not been widely explored for phylogenetically distant species that have completely different
pheromone components. Yet, pheromone components of sympatrically occurring species may also interfere with each other
even if these species are distantly related. Here, the effects of heterospecific pheromones on electrophysiology (electroanten-
nogram, EAG) and behavioral responses were tested on the diamondback moth Plutella xyloslella (Plutellidae) and two sympat-
ric noctuid moth species, Spodoptera litura and Spodoptera exigua, whose larvae also feed on Brassica crops.

RESULTS: The sex pheromone blend of P. xyloslella, and its components, did not elicit EAG responses in males of the two noctuid
species, while sex pheromone components of the noctuid moths elicited significant EAG responses in P. xyloslella males. In wind
tunnel bioassays, both (Z, E)-9, 12-tetradecadienyl acetate (ZE-9,12-14:0Ac) and (Z, E)-9, 11-tetradecadienyl acetate (ZE-9,11-14:
OACc), sex pheromone components from the noctuid moths, inhibited the upwind flight behavior of P. xyloslella males toward an
intraspecific pheromone odor source. In Brassica fields, sex pheromone lures of P. xyloslella did not influence trap catches of the
noctuid moths, while P. xyloslella pheromone lures baited with either ZE-9,11-14:0Ac or ZE-9,12-14:0Ac decreased trap catches
of P. xyloslella males in a dose-dependent manner. Trap catches of P. xylostella males were also affected by the proximity of
ZE-9,11-14:0Ac or ZE-9,12-14:0Ac to P. xylostella lures.

CONCLUSION: The uni-directional pheromone antagonism by ZE-9,11-14:0Ac and ZE-9,12-14:0Ac suggests innovative
semiochemical-based strategies for the management of P. xyloslella and other economically important pests in Brassica fields.
© 2021 Society of Chemical Industry.

Supporting information may be found in the online version of this article.
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1 INTRODUCTION

Reproduction in moth species relies heavily on sex pheromones
released by females that attract conspecific males. Sex phero-
mones are species-specific and are often emitted as a blend of
multiple components that collectively enable conspecific mate-
finding while preventing infertile hybrids from cross-mating.'”
However, under some conditions, species-specific pheromones
might fail to guide conspecific males to the odor source due to
the presence of confounding sensory cues in their habitat, includ-
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ing heterospecific sex pheromone compounds released by other
species with overlapping temporal and spatial sexual communi-
cation.>* Such overlap, and potential interference in sexual com-
munication, are expected to occur in agricultural pests whose
own phenologies are guided by crop phenology. Also, invasive
species that are allopatric in their respective native habitat may
interfere with each other in their new sympatric habitat.

For sympatric moth species, interspecific interference of sexual
communication is generally avoided by either temporal separa-
tion of calling behavior or divergence of their pheromone
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blends.> While it is common for sibling species to share major
pheromone components due to common ancestry, distantly
related species (different genera) may also release the same pher-
omone compounds because moths share similar pheromone bio-
synthetic pathways in their pheromone glands.® Females
generally produce ‘minor’ components, which maintain species-
specificity, and the male antennae express pheromone receptors
specifically tuned to each of the pheromone components of the
female blend.”"° These components are usually geometric iso-
mers or analogs of the common major pheromone compound,
and they share biosynthetic pathways. The species-specific minor
components and the overall blend ratio are often detected by
heterospecific males and cause these males to cease their
pheromone-guided anemotaxis.” There are also a few cases in
which pheromone antagonism occurs between sympatric moths
that share no common pheromone compounds. These species
are often distantly related phylogenetically and belong to differ-
ent genera®'"""? or more rarely to different families.>'*

In this study, we focused on two different families of moth pests
that attack Brassica plants including a variety of agricultural and
horticultural crops. In China, significant economic damage to Bras-
sica production is caused by spatial-temporal co-occurrences of
multiple herbivores including larvae of the oligophagous moth
Plutella xylostella Linnaeus (Lepidoptera: Plutellidae) and two
polyphagous moths, Spodoptera litura Fabricius (Lepidoptera:
Noctuidae) and Spodoptera exigua Fabricius (Lepidoptera: Noctui-
dae). The pheromone blends of P. xylostella and the two noctuid
moths do not share any pheromone components. For each spe-
cies, the major functional components have been well character-
ized and applied to species-specific mass trapping and
surveillance programs in China (summarized in Table 1). Females
of P. xylostella release (2)-11-hexdecenyl acetate (Z11-16:0Ac),
(2)-11-hexadecenal  (Z11-16:Ald), and (2)-11-hexadecenol
(Z11-16:0H), and a blend ratio of these respective components
at 27:64:9 (denoted as pheromone blend Px) at 10 pg was strongly
attractive to conspecific males in China.'*'® In contrast, extracts
from pheromone glands of these two noctuid moths (S. litura
and S. exigua) contain mainly 14-carbon alcohol, aldehyde, and
acetate esters.'®'” In China, highly attractive pheromone blends
for S. exigua'® contain (ZF)-9,12-tetradecadienyl acetate
(ZE-9,12-14:0Ac¢) and (2)-9-tetradecenol (Z9-14:0H) (pheromone
blend Se, 90:10 w/w) at 100 pg and blends for S. litura'® contain
(ZE)-9,11-tetradecadienyl  acetate  (ZE-9,11-14:0Ac) and
ZE-9,12-14:0Ac (pheromone blend SI, 90:10 w/w) at 100 pg.

As larvae of P. xylostella and the two noctuid moths occur sym-
patrically on Brassica crops, in this study we hypothesized that:
(i) the antennae of females and males of each of the three species
would respond to different amounts of heterospecific sex phero-
mone components; (i) pheromone antagonism would occur

between P. xylostella and these two noctuid moths;
(iii) pheromone antagonism might be effective in the field and
therefore potentially useful in pest management. To test our
hypotheses, we first measured the electrophysiological responses
of female and male antennae of each species to each heterospe-
cific sex pheromone blend. Because only male antennae of
P. xylostella responded to sex pheromone components of the noc-
tuid moths, we evaluated the effects of noctuid pheromones on
pheromone-guided behavior of P. xylostella in a wind tunnel. In
a cabbage (Brassica oleracea L)) field, we assessed the attraction
of males of the three species to their species-specific lures with
and without heterospecific components. The attraction of
P. xylostella males to sex pheromone traps was also examined in
a cauliflower (B. oleracea var. botrytis) field by combining lures
with different doses of sex pheromones of the noctuid moths. In
another cabbage field (B. oleracea) sex pheromone traps were
arranged at various distances from a noctuid pheromone lure to
assess the effects of distance from the antagonistic pheromone
on trap captures. The results of this study improve our under-
standing of the function of sex pheromones in sympatric moth
species. This study also provides insights into the mechanisms
by which pheromone antagonism might enhance the biological
control of multiple species of insect herbivores in their shared
host crops.

2 MATERIALS AND METHODS

2.1 Pheromone chemicals

Synthetic Z11-16:0Ac (CAS: 34010-21-4), Z11-16:Ald (CAS:
53939-28-9), Z11-16:0H (CAS: 56683-54-6), ZE-9,11-14:0Ac (CAS:
50767-79-8), ZE-9,12-14:0Ac (CAS: 30507-70-1) and Z9-14:0H
(CAS: 35153-15-2) were purchased from Shin-Etsu Chemical Co.,
Ltd. All chemicals were verified to >97% purity by GC-MS before
experiments.

2.2 Insects

Laboratory populations of P. xylostella and the two noctuid moths
(S. litura and S. exigua) used for electrophysiological recordings
originated from adults collected from different cabbage fields all
of which were free from pesticide application. All three species
were maintained under 14L: 10D at 25 + 2 °C and 70% relative
humidity, and they were reared by methods adapted from previ-
ous studies.'®?° Adults of P. xylostella were obtained by rearing
larvae on cabbage plants in large plastic-screen cages
(3.5x3.5%x 1.5 m). Pupae were removed to another cage
(0.5 x 0.5 x T m) and newly emerged adults were separated into
individual test tubes containing cotton pads impregnated with
approximately 10% honey in water. Adults of S. litura and
S. exigua were placed in separate large plastic-screen cages
(3.5 X 3.5 X 1.5 m), supplemented with 10% honey in water, and

Table 1. Composition of pheromone blends of three moth species used in this study

Proportion (%)
Species Pheromone blend ZE-9,11-14:0Ac ZE-9,12-14:0Ac Z9-14:0H Z11-16:0Ac Z11-16:Ald Z11-16:0H
Spodoptera litura Sl 90 10 — — — —
Spodoptera exigua Se — 90 10 — — —
Plutella xylostella Px — — — 27 64 9
T Proportion is on a wt/wt basis relative to the total pheromone blend in each row.
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stencil paper was placed inside for egg deposition. Eggs were
transferred into new cages containing an artificial diet for larvae
and coarse soil for pupation.?’ Pupae were transferred to jars each
containing a moistened paper at the base, and newly emerged
adults were individually transferred to test tubes supplemented
with cotton pads impregnated with approximately 10% honey
in water.

2.3 Electroantennogram recordings

At the onset of scotophase, unmated 2 to 3-day-old males and
females of the three moth species were acclimatized under the
experimental conditions. All tests were conducted 4-8 h from the
onset of scotophase. An antenna from each CO,-anaesthetized adult
was detached at the base with a dissecting scalpel and attached to
an adjustable antenna holder (steel electrode) supported by electri-
cally conductive gel. The electrode was supported on an MP-15
micromanipulator covered with a steel mesh screen that was con-
nected to the ground of an electrical outlet. The amplified signal
was captured by the signal acquisition interface IDAC-2 (Syntech)
connected to a computer. A stimulus controller (CS-55; Syntech)
was used to deliver constant humidified air at 5 mLs™' over the
antenna through a 7 mm diameter Teflon tube. The CS-55 was also
used to generate an independent air flow (0.5 5,4 mL s™") that deliv-
ered the stimulus odor as a pulse into a steel mixing tube that termi-
nated 1 cm from the antenna. To test antennal responses of both
sexes of each moth species to each sex pheromone blend, all sex
pheromone blends were dissolved in hexane to four concentrations
(0, 0.1, 1, and 10 pg pL_1). To test the antennal responses of
P. xylostella males to conspecific and heterospecific sex pheromone
components, each component was dissolved in hexane and diluted
to three concentrations (0.1, 1,and 10 pg pL™"). In both experiments,
10 pL of each solution was pipetted onto a rectangular filter paper
(1 x 3 cm), and the paper was then inserted into a Pasteur pipette
within 5 min of loading the stimulus. The wide section of the Pasteur
pipette was connected to the pulse flow tube and the narrow end
was inserted through a hole in the steel mixing tube. In the first
experiment, each antenna was stimulated by only one sex phero-
mone blend with increasing concentrations and each concentration
was tested with three puffs 30 s apart. In the second experiment,
each antenna was stimulated by one dose in the following order:
ZE-9,11-14:0Ac, ZE-9,12-14:0Ac, Z9-14:0H, Z11-16:Ald, Z11-16:0Ac,
and Z11-16:0H. Each component was tested with three successive
puffs. In both experiments, EAG values (mV) from the three puffs
for each treatment (pheromone blend/compound x concentration)
were averaged, and six antennae (n = 6) were used as replicates for
each treatment. The Pasteur pipette and filter paper stimulus were
replaced with a fresh stimulus after each antenna replicate.

2.4 Wind tunnel bioassay

Since antennae of P. xylostella males could detect the sex phero-
mones of the two Spodoptera species, the upwind flight of
P. xylostella males to its species-specific pheromone odor source
(Px) in the presence of the noctuid pheromones was investigated
in a cylindrical wind tunnel apparatus (diameter, 50 cm; length,
180 cm; illustrated in Fig. S1) under 5 Ix red light illumination at
27 + 2 °C and 70-80% relative humidity. Air velocity of approxi-
mately 40 cm s~ was generated by a fan at the downwind end of
the tunnel. To prepare odor sources, different pheromone blends
or components were dissolved in hexane and applied to a common
rectangular piece of filter paper (5 X 7 cm), which was then trans-
ferred into a cylindrical wire screen cage (OD, 6 cm; height, 10 cm)
5 min after pheromone application. Filter papers with sex

pheromones were replaced after three replicate trials. Unmated
2-day-old males were individually transferred to glass test tubes
(OD, 3 cm; height, 10 cm) and acclimated to the wind tunnel condi-
tions 60 min before tests. Each male was tested only once by being
released 120 cm downwind of the odor source and all males were
tested 4-8 h into scotophase. The internal surface of the wind tun-
nel and the screen cage was washed with hexane after 10 replicate
trials. Each male was tested for no more than 8 min and the behav-
ioral responses were categorized as ‘take-off' (TO), oriented flight to
half the length of the tunnel (HT), approached the source within
15 cm of the lure (AP), and source contact (SC).

2.5 Field trapping experiments

In all field experiments, red plastic basins (ID, 20 cm) filled with
dilute detergent solution were used as traps. Lures were prepared
by loading pheromone blends or components into red cylinder
rubber septa (ID, 10 mm; height, 10 mm; Institute of Plant Physiol-
ogy & Ecology, Shanghai Institutes for Biological Sciences, Chinese
Academy of Sciences). A metal wire was used to tie a single lure or
two lures together 2 cm above the water surface.

The first field trapping experiment was conducted in a cabbage
field in Taizhou City, China, from 26 May to 3 June 2013. The
attraction of each of the three moth species was evaluated
according to their species-specific lures or combined lures at
doses optimized for each species.'®'%® As a follow-up, a second
trapping period was carried out in a cauliflower field in Shanghai,
China, from 4-12 June 2014 to assess the dose-response effects
of the noctuid moth sex pheromones on the attraction of
P. xylostella males to the Px pheromone blend. In these two field
experiments, each treatment was replicated with six traps
(n = 6). Hexane-loaded septa were used as a negative control.
Traps were placed 6-7 m apart, with randomly assigned treat-
ment positions. Moth species were identified, counted, and
removed daily. Traps were re-randomized daily to minimize posi-
tional effects.

A third trapping experiment was conducted in three adjacent
cabbage fields in Pinghu County, Zhejiang, China, from 22-28
October 2017 to determine the effect of the distance of
ZE-9,11-14:0Ac and ZE-9,12-14:0Ac lures on the attraction of
P. xylostella males to the Px pheromone blend. This experiment
was conducted when the field population of P. xylostella was
declining. In each of the three fields, 25 basin traps, each baited
with a rubber septum impregnated with 10 pg Px pheromone,
were evenly arranged in a 5 x 5 layout (Fig. 5(A)). Traps were
placed 2 m apart and 15 cm above the plant canopy (Fig. 5(A)).
The central trap in each trap array was baited with an additional
rubber septum loaded with either hexane (control, CK), ZE-
9,11-14:0Ac (100 pg), or ZE-9,12-14:0Ac (100 pg), and tied
together with the Px pheromone lure. By this design, captures of
P. xylostella males were expected to be suppressed according to
the distance from the central trap (Fig. 5(A)). Captures of
P. xylostella males at each trapping site were counted, recorded,
and removed daily and all traps except the central trap were
re-randomized daily.

2.6 Data analysis

The antennal responses of females and males of P. xylostella to the
pheromone blends of the noctuid moths were analyzed with a
general linear model (GLM) explaining the effects of the phero-
mone blend, pheromone dose, moth sex, and their binary and ter-
nary interactions. We selected the GLM based on the Akaike
information criterion (AIC) using the aictab function in the
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‘AlCcmodavg’ package.?? The antennal responses of the two noc-
tuid moths to the pheromone blend of P. xylostella were analyzed
in separate GLMs with the effects of pheromone dose, moth sex, and
their interaction. The antennal responses of P. xylostella males to con-
specific and heterospecific sex pheromone components were ana-
lyzed in a GLM analyzing the effects of component, pheromone
dose, and their interaction. All model effects from EAG experiments
were analyzed by ANOVA (a = 0.05) and estimated marginal means
(emmeans) were compared with p-values adjusted by Tukey's HSD
tests. In the wind tunnel bioassay, the percentages of P. xylostella
males that showed a behavioral response (i.e., TO, HT, AP or SC) out
of the total males tested were compared among different pheromone
sources using a binomial generalized linear model (GLIM) with a logit
link. The emmeans were compared using Tukey's HSD for P-value
adjustment. We considered the hexane control as an independent
negative control and did not include it in the multiple comparisons.
In the first two field experiments, the effect of pheromone lures on
total captures of each species was identified by a likelihood-ratio
Chi-squared test (Type Il ANOVA, « = 0.05) from a Poisson GLIM with
a log link, and Tukey's HSD tests were used to compare emmeans. In
the third field trapping experiment, the effects of distance (X) of Px
pheromone-baited traps from the central trap (baited with two lures
loaded with, respectively, Px and one pheromone component of the
noctuid moths) on total captures (Y) of P. xylostella males were deter-
mined in separate Poisson GLIMs [i.e, log(Y) = f, + f:X)] by analyzing
the estimated coefficients of ‘distance’ (;) with one-sample z-tests
(@ = 0.05). All the procedures were programmed in R (version 3.4.3;
R Development Core Team, www.R-project.org).?

3 RESULTS

3.1 P. xylostella males olfactorily detect noctuid moth
pheromones

The antennal responses in these two noctuid moth species to sex
pheromone blend of P. xylostella (Px) were consistently low and
did not vary significantly with moth sex (S. litura: F; 40 = 0.001,
P =0.970; S. exigua: Fy 40 = 0.001, P = 0.982), different pheromone
doses (S. litura: F340 = 0.097, P = 0.961; S. exigua: F540 = 0.059,
P =0.981), or their interaction (S. litura: F5 40 = 0.125, P = 0.944; S. exi-
gua: F5 40 = 0.140, P = 0.935). However, the antennal responses of P.
xylostella to the pheromone blends of the noctuid moths varied sig-
nificantly with moth sex (F; 123 = 330.246, P < 0.001), noctuid pher-
omone blends (F; 128 = 98335, P < 0.001), doses of pheromone
blend (F3 128 = 134.956, P < 0.001), all their binary interactions (sex-
X blend: F; 128 = 32392, P < 0.001; sex X dose: F313 = 69.118,
P < 0.001; blend x dose: F5 1,8 = 24.345, P < 0.001) as well as the
ternary interaction (sex X blend X dose:  F3123 = 11.591,
P < 0.001). By multiple comparisons (Tukey's HSD) it was found that
the antennal responses in female P. xylostella did not vary signifi-
cantly to various doses of pheromone blend Se, or to various doses
of pheromone blend SI (P > 0.05). However, compared to the hex-
ane control, significantly higher EAG responses were elicited in
males of P. xylostella by =10 pg pheromone blend SI (t = 5.830,
P <0.001) and by =1 pg pheromone blend Se (t = 12.172;
P < 0.001) (Fig. 1).

3.2 Antennal responses of P. xylostella males to

conspecific and heterospecific sex pheromone

components

Comparing antennal responses to different doses of the compo-
nents of the intraspecific pheromone (Z11-16:0Ac, Z11-16:0Ac,
and Z11-16:0H) and to the components of the two noctuid

O Female ® Male

Plutella xylostella Plutella xylostella
1.5+
1.0
a
_ 0.5+
2 a
é 0.01
©)
<
Ll
Spodoptera exigua Spodoptera litura
0.8 0.8
ns ns
0.6 A 0.6
0.4-§ i g 0.4-§ § i §
0 1 10 100 0 1 10 100
Px Px
Dose (ng)

Figure 1. Electrophysiological responses (mean + SE, mV) in female and
male Spodoptera litura, Spodoptera exigua and Plutella xyloslella. The spe-
cies names indicate the source of the antennae tested, and the phero-
mone blends are: S (S. litura): ZE-9,11-14:0Ac and ZE-9,12-14:0Ac (90:10
w/w). Se (S. exigua): ZE-9,12-14:0Ac and Z9-14:0H (90:10 w/w), Px
(P. xyloslella): Z11-16:0Ac, Z11-16:Ald and Z11-16:0H (27:64:9 w/w). Statis-
tical differences across doses for each sex and species are indicated by dif-
ferent letters (ANOVA and Tukey's HSD, P < 0.05, ns, not significant). N =6
antennae per mean.

Dose (ug)
] 1|0 100
1.66 | 2.57
Z11-16:Ald{ (0.29) | (0.31)
O Ac = Ab
t |
8 158 239
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et Cb D,b D,a
9
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<= Z9-14:0H4 (0.13) (0.11) (0.:22)
Cb Db D,a

Figure 2. Electrophysiological responses (mean + SE, mV) in male moths
of Plutella xyloslella to conspecific and heterospecific pheromone compo-
nents at three different doses. The heat map illustrates the gradient of
responses with the greatest responses to conspecific components. Differ-
ent capital letters within each column indicate significant differences
among pheromone components, while different lower-case letters within
each row indicate significant differences among the doses (Tukey's HSD,
P < 0.05). N = 6 antennae per mean.
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species (ZE-9,11-14:0Ac, ZE-9,12-14:0Ac, and Z9-14:0H), we
found no significant interaction between ‘component’ and ‘dose’
(Fio00 = 1.731, P = 0.086) (Fig. 2), suggesting that the response to
different doses did not differ significantly among the pheromone
components. Within each of the dose levels, antennal responses
to the three conspecific pheromone components were signifi-
cantly greater than to each of the noctuid pheromone compo-
nents, and responses to ZE-9,12-14:0Ac were significantly
greater than to the other two noctuid pheromone components
(P < 0.05). On the other hand, antennal responses to the conspe-
cific pheromone components and ZE-9,12-14:0Ac increased sig-
nificantly with increasing doses (P < 0.05), while the responses
to ZE-9,12-14:0Ac and to Z9-14:0H increased significantly only
at a dose of 100 pg (P < 0.05).

3.3 The noctuid moth sex pheromones antagonize the
orientation of P. xylostella in a wind tunnel

In the wind tunnel, 80.00% of tested P. xylostella males activated in
response to pheromone blend Px and 55.00% of tested males

eventually reached the odor source (Table 2). When Z9-140H
and pheromone blend Px were presented together, the percent-
ages of all behavioral categories decreased slightly, but not signif-
icantly (P > 0.05). Pheromone odor treatment had significant
effects on males’ orientated flight halfway (HT: y* = 12.179,
df = 5, P = 0.032), approaching within 15 cm of the source (AP:
y> = 19763, df = 5, P = 0.001) and source contact (SC:
% =23.398, df =5, P < 0.001). The percentage of males that ori-
ented halfway up the wind tunnel (HT) significantly decreased
when pheromone blend Px was combined with blend SI
(z=3.133, P = 0.021). The percentage of males flying close to
source (AP) significantly decreased when pheromone blend Px
was mixed with either blend Sl (z=3.401, P = 0.009), blend Se
(z = 3.032, P = 0.0293), or ZE-9,11-14:0Ac (z = 3.169,
P =0.013), while the reduction was marginally significant when
pheromone blend Px was mixed with ZE-9,12-14:0Ac (z = 2.598,
P = 0.098). The percentage of males that contacted the odor
source (SC) significantly decreased when pheromone blend Px
was combined with either blend S| (z = 3.741, P = 0.003), blend

Table 2. Behavioral responses of Plutella xylostella males to various pheromone sources in a wind tunnel

Male response (%)°

Odor source’ Males* TO HT AP Ne
Hexane 34 17.65 5.88 294 0

Px 60 80.00 66.67 b 6167 b 5500 b
Px + Sl 52 65.38 3846 a 2885 a 1923 a
Px + Se 62 7742 5323 ab 33.87a 2581 a
Px + ZE-9,11-14:0Ac 59 74.58 47.46 ab 3223a 27.12a
Px + ZE-9,12-14:0Ac 54 77.78 50.00 ab 37.04 ab 29.63 ab
Px + Z9-14:0H 50 70.00 60.00 ab 52.00 ab 46.00 ab

* Numbers of males tested for each odor source.

* Pheromone blend: Px (Plutella xylostella): Z11-16:0Ac, Z11-16:Ald and Z11-16:0H (27:64:9 w/w). S| (Spodoptera litura): ZE-9,11-14:0Ac and
ZE-9,12-14:0Ac (90:10 w/w). Se (Spodoptera exigua): ZE-9,12-14:0Ac and Z9-14:0H (90:10 w/w). The dosage of Px was 10 pg, and the dosage of each
pheromone blend (Sl or Se) or single component (ZE-9,11-14:0Ac, ZE-9,11-14:0Ac or Z9-14:0H) of noctuid moths was 100 pg.

$ Percentages in each row are relative to the total number (100%) of males tested. In each column all treatments excluding ‘hexane’ were compared
with each other by Tukey's HSD tests and different letters indicate significant differences. TO, take-off; HT, oriented flight to half the length of the tun-
nel; AP, approach the pheromone source, within 15 cm; SC, source contact.
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Figure 3. Field trapping of males of Spodoptera litura, Spodoptera exigua and Plutella xyloslella by their independent or combined sex pheromone lures.
This study was conducted from 26 May to 3 June 2013 in a cabbage (Brassica oleracea L.) field in Taizhou City, China. The pheromone blends were: S|
(S. litura): ZE-9,11-14:0Ac and ZE-9,12-14:0Ac (90:10 w/w). Se (S. exigua): ZE-9,12-14:0Ac and Z9-14:0H (90:10 w/w), Px (P. xyloslella): Z11-16:0Ac,
Z11-16:Ald and Z11-16:0H (27:64:9 w/w). Doses of lures were 10 pg for Px and 100 pg for Se and SI. For each species total captures of males (n = 6 traps)
were compared by ANOVA and Tukey's HSD (@ = 0.05) after log;o(x + 1) transformation and statistical differences are represented by lowercase, italics,
and capital letters, respectively.
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Se (z=3.228, P = 0.016), ZE-9,11-14:0Ac (z = 3.040, P = 0.029),
while the reduction was marginally significant when phero-
mone blend Px was mixed with ZE-9,12-14:0Ac (z = 2.697,
P =0.076).

3.4 Noctuid pheromones reduced catches of P. xylostella

in the field

In the first cabbage field, sex pheromone lures of P. xylostella were
combined with sex pheromone lures of the noctuid moths (Fig. 3).
The results showed that numbers of S. litura males captured did
not differ significantly between traps baited with pheromone
blend Sl alone and with S| + Px (z = 0.570, P = 0.990). Likewise,
catches of S. exigua males were not significantly different
between the traps baited with pheromone blend Se alone and

with Se + Px (z=0.754, P = 0.998). However, compared to catches
of P. xylostella in Px traps, significantly fewer P. xylostella males
were captured when pheromone blend Px was combined with
Sl (z=12.276, P < 0.001), Se (z = 12.189, P < 0.001), ZE-9,11-14:
OAc (z = 12.833, P<0.001) or ZE-9,12-14:0Ac (z = 11.984,
P < 0.001), but not when Px was combined with Z9-14:0H
(z=1.858, P = 0.643).

3.5 The noctuid moth sex pheromones reduced catches

of P. xylostella in a dose-dependent manner

In the cauliflower field, the attraction of P. xylostella was examined
in traps baited with lures with Px pheromone and with different
doses (1-100 pg) of sex pheromone blends and single compo-
nents of the two noctuid species (Fig. 4). Overall, adding 20-
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Figure 4. Field trapping of Plutella xylostella males by Px lures plus different doses of other noctuid pheromones. This study was conducted from 4-12
June 2014 in a cauliflower (Brassica oleracea var. botrytis) field in Shanghai, China. The pheromone blends were: SI (Spodoptera litura): ZE-9,11-14:0Ac and
ZE-9,12-14:0Ac (90:10 w/w). Se (Spodoptera exigua): ZE-9,12-14:0Ac and Z9-14:0H (90:10 w/w), Px (P. xyloslella): Z11-16:0Ac, Z11-16:Ald and Z11-16:0H
(27:64:9 w/w). Different letters indicate significant differences of total captures of males which were compared after log,o(x + 1) transformation (n = 6,
mean + SE, ANOVA and Tukey's HSD, P < 0.05).
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Figure 5. Catches of Plutella xylostella males by P. xylostella (Px) lures at varying distances from a central Px lure (P. xyloslella: Z11-16:0Ac, Z11-16:Ald and
Z11-16:0H, 27:64:9 w/w) that also contained either ZE-9,11-14:0Ac or ZE-9,12-14:0Ac. This study was conducted from 22-28 October 2017 in a cabbage
(Brassica oleracea L.) field in Pinghu County, Zhejiang, China. (A) Arrangement of the 25 traps baited with various lures. A central trap contained the Px lure,
and either ZE-9,11-14:0Ac or ZE-9,12-14:0Ac and traps at various distances from the central trap contained only the Px lure. (B) The effects of distance
(in m) to the central lure (Px plus either ZE-9,11-14:0Ac or ZE-9,12-14:0Ac) on catches of males in traps baited with only the Px lure. Data were fitted
by Poisson models and the shaded areas indicate 95% Cl. P value was from the one sample z-test for the coefficient of ‘distance’ in each regression model
(Control (CK): —0.0098 + 0.083,z= —0.118, P = 0.91; ZE-9,11-14:0Ac: 0.68 + 0.13, z=5.14, P < 0.001; ZE-9,12-14:0Ac: 0.75 + 0.15, z = 4.87, P < 0.001).
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100 pg of either pheromone blend of the two Spodoptera species
or each of the two single components (ZE-9,11-14:0Ac or ZE-
9,12-14:0Ac), significantly reduced the catches of P. xylostella
males (Tukey's HSD, P < 0.05). Adding 100 pg of each of these
pheromone treatments to Px reduced the catches of P. xylostella
to levels that were not significantly different from the blank neg-
ative control lure (Tukey's HSD, P > 0.05).

3.6 Proximity of noctuid pheromones to P. xylostella
pheromone lures affects trap catch of P. xylostella males

We positioned traps containing Px lures at various distances from
a central trap that also contained noctuid lures to assess the spa-
tial range of noctuid inhibition on catches of P. xylostella males
(Fig. 5). The effect of distance on total captures of P. xylostella
males was analyzed in each Poisson model by estimating the
coefficient of the ‘distance’ term. When a Px pheromone lure
and a control (hexane, CK) lure were positioned together in the
central trap, the total P. xylostella males trapped at different dis-
tances were not significantly different (CK model: AIC = 109.32,
distance coefficient = —0.010 + 0.083, z = —0.118, P = 0.906).
However, when the central trap had a Px pheromone lure as well
as a lure that contained 100 pg of either ZE-9,11-14:0Ac or ZE-
9,12-14:0Ac, there was a significant decline in trap catch with
greater proximity to the center trap, meaning that the distance
coefficient was significantly greater than zero (ZE-9,11-14:0Ac
model: AIC = 76.108, distance coefficient = 0.683 + 0.133,
z = 5.142, P < 0.001; ZE-9,12-14:0Ac model: AIC = 72.627, dis-
tance coefficient = 0.749 + 0.154, z = 4.870, P < 0.001).

4 DISCUSSION

Adult males of the three species (S. exigua, S. litura and
P. xylostella) were active on the same nights, as evidenced by
the numbers of adults of each species captured in traps in the cab-
bage field (Fig. 3). The synthetic lures of the three species were
highly species-specific, as evidenced by the lack of cross-
attraction of each species to the sex pheromone of the other
two species. The addition of the sex pheromone of P. xylostella
(Px) to the species-specific noctuid lures did not affect the number
of males of the two Spodoptera species captured (Fig. 3). These
findings are consistent with the electrophysiological recordings,
showing that the Px pheromone did not elicit antennal responses
in males of both noctuid moth species (Fig. 1). On the other hand,
ZE-9,11-14:0Ac, ZE-9,12-14:0Ac as well as the two noctuid phero-
mone blends significantly reduced numbers of P. xylostella males
captured in traps baited with the Px species-specific pheromone
lure; the noctuid moth sex pheromone compounds reduced num-
bers of males of P. xylostella males captured to the numbers cap-
tured in blank control traps in the cauliflower field (Fig. 4). In the
wind tunnel bioassay, the approach of P. xylostella males to Px
pheromone was inhibited by lures containing ZE-9,11-14:0Ac or
ZE-9,12-14:0Ac, with the former component being more effective
at inhibiting upwind orientation (Table 2). In another cabbage
field (B. oleracea), captures of P. xylostella were affected similarly
by the distance of the Px lures from a lure that contained Px as
well as ZE-9,11-14:0Ac and ZE-9,12-14:0Ac (Fig. 5). Although ZE-
9,11-14:0Ac and ZE-9,11-14:0Ac were equally inhibitory in the
cauliflower field, and ZE-9,11-14:0Ac was a more effective inhibi-
tor of attraction in the wind tunnel, antennal responses to ZE-
9,12-14:0Ac were greater compared to ZE-9,11-14:0Ac (Fig. 2).
These results highlight that EAG responses do not necessarily pre-
dict behavioral responses. In addition, differential volatilities of

the pheromone components and variation in environmental con-
ditions in different Brassica fields likely affected the performance
of these semiochemicals. Nevertheless, our behavioral assays in
the wind tunnel were consistent with the electrophysiological
recordings; antennal responses and behavioral antagonism were
found only in P. xylostella males, whereas males of both noctuid
moth species were not influenced electrophysiologically nor
behaviorally by the sex pheromone of P. xylostella.

Unlike the uni-directional behavior inhibition we presented
here, pheromone inhibition was mutual between two sympatric
corn borer species Ostrinia nubilalis (Lepidoptera: Pyralidae) and
Sesamia nonagrioides (Lepidoptera: Noctuidae), despite being in
different families and having completely different pheromone
components.>'? Since EAG responses elicited by inter- and intra-
specific pheromones were comparable in these two species, the
authors speculated that antennal responses to the pheromone
of the other species were due at least in part to olfactory receptors
tuned specifically to these molecules.* In our EAG recording, the
three noctuid pheromone components elicited different antennal
responses, but all responses were significantly lower than the
responses elicited by each of the conspecific pheromones when
three dosage levels were tested (Fig. 2). In follow-up studies, it will
be important to test more dosage levels and estimate parameters
such as threshold dose and saturation dose from the dose-
response curves. This would allow us to better differentiate the
antennal responses to conspecific and heterospecific pheromone
compounds.

The uni-directional pheromone inhibition in sympatric moths
that use different pheromones also occurred between species in
related genera (e.g., Heliothis (= Chloridea) virescens and Helicov-
erpa gelotopoeon),’" and in related subfamilies (e.g., Cydia pomo-
nella and Adoxophyes orana,* and Tetanolita mynesalis and
Lacinipolia renigera'?). The two sex pheromone components of
A. orana are 14-carbon acetate esters, whereas the main sex pher-
omone component of C. pomonella is a 12-carbon alcohol. Yet
adding the A. orana pheromone to a C. pomonella pheromone
source resulted in significant inhibition of attraction of male
C. pomonella.* This interspecific interaction was further hypothe-
sized to be related to evolutionary divergence in tortricid moths:
C. pomonella as well as other Olethreutinae species have evolved
to utilize 12-carbon sex pheromones while conspecific males
retained olfactory receptors tuned to 14-carbon compounds for
interspecific recognition.”

Previous research showed that both males and females of
P. xylostella can detect a broad range of plant volatiles, but only
males respond to female sex pheromone components.?® Taken
together with our results, it is reasonable to speculate two olfac-
tory mechanisms for the cross-species inhibition. The first is that
the olfactory receptors in male P. xylostella antennae that respond
to the three heterospecific pheromone components are also
broadly tuned to a range of moth pheromone components. This
speculation is supported by evidence from heterologous
co-expression analysis—olfactory receptor PxylOR4, which is
exclusively expressed in males of P. xylostella, responded not only
to ZE-9,12-14:0Ac, but also with less sensitivity to Z9-14:0Ac, a
pheromone component used by many moth species.®*?” The
structural similarity between ZE-9,12-14:0Ac, ZE-9,11-14:0Ac
and Z9-14:0Ac also supports this hypothesis, as large amounts
of 79-14:0Ac are antagonistic to pheromone attraction of
P. xylostella.?®?° The second hypothesis is that sensilla on
P. xylostella male antennae house pheromone receptors that
uniquely respond to the noctuid pheromones and not to the
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P. xylostella pheromone components. These receptors might
serve important functions in the native habitat of P. xylostella, or
they might represent relics of evolutionary divergence from a
noctuid-like ancestor. The antagonistic effects of ZE-9,12-14:0Ac
and ZE-9,11-14:0Ac can be understood better if more heterospe-
cific pheromones with varied structural relations to conspecific
pheromones are tested at both antennal and behavioral levels.
Single-sensillum recordings are also essential to compare
response profiles of pheromone receptor neurons to conspecific
and heterospecific pheromones by dose-response analysis. Dif-
ferentiation of these two hypotheses will need to await future het-
erologous expression of candidate pheromone receptors.
Nevertheless, in the near-term, cross-habituation studies of
P. xylostella male antennae with the conspecific and heterospeci-
fic components can provide leads as to whether they stimulate
the same broadly tuned receptors or different receptors.

All three of these species exhibit nocturnal reproductive activi-
ties, including nocturnal calling behaviors of females and flight
responses of males.>**' The circadian rhythms of sexual activities
of the two noctuid moths were not constant under different lab-
controlled photoperiods and temperatures,*® making it difficult
to infer the degree of overlap of their mating behaviors under
common field conditions. However, the directional inhibition of
the pheromones of noctuid moths on the P. xylostella male
response to female sex pheromone suggests additional strategies
for the management of these pest species that coexist in Brassica
fields. In our trapping experiment conducted in a cauliflower field,
the noctuid pheromone blends, as well as their single compo-
nents, had comparable effects on decreasing trap catches of
P. xylostella males (Fig. 4). Our results suggest that the 14-carbon
acetate esters could be optimized to disrupt the orientation of
P. xylostella males to female-produced sex pheromone and pre-
vent successful mating while concurrently disrupting the mating
of these two noctuid moth species. Thus, antagonistic and agonis-
tic actions could simultaneously disrupt the sexual communica-
tion of all the three species.
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